Реферат: Технология получения монокристаллического Si

Рассмотренный процесс осаждения поликристаллического крем­ния используется также для получения на его основе поликристал­лических труб на углеродных оправках. Вследствие высокой чистоты и прочности эти трубы применяются вместо кварцевых в печах высокотемпературных процессов (свыше 1200 ° С) в технологии полупроводниковых и микроэлектронных приборов. Кремниевые тру­бы не подвержены просаживанию или другой деформации в течение нескольких лет эксплуатации, несмотря на постоянное температур­ное циклирование между 900 и 1250 ° С, тогда как кварцевые трубы имеют ограниченный срок службы при тех же процессах.

Потребление поликристаллического кремния электронной промышленностью составляет несколько тысяч тонн в год.

Для получения кремния высокой чисто­ты поликристаллические стержни подвергают кристаллизационной очистке методом зонной плавки в вакууме. При этом помимо крис­таллизационной очистки кремния от нелетучих примесей (преиму­щественно акцепторов) происходит существенная очистка его от летучих доноров за счет испарения их из расплавленной зоны. Так, после 15 проходов расплавленной зоны со скоростью 3 мм/мин, по­лучают монокристаллы кремния р-типа электропроводности с остаточной концентрацией примеси менее 1013 см-3 и удельным со­противлением (по бору) более 104 Ом*см.

Производство монокристаллов кремния

Производство монокристаллов кремния в основном осуществля­ют методом Чохральского (до 80 90 % потребляемого электронной промышленностью) и в меньшей степени методом бестигельной зон­ной плавки.

Метод Чохральского

Идея метода получения кристаллов по Чохральскому заключается в росте монокристалла за счет перехода атомов из жидкой или газообразной фазы вещества в твердую фазу на их границе раздела.

Применительно к кремнию этот процесс может быть охарактеризован как однокомпонентная ростовая система жидкость - твердое тело.

Скорость роста V определяется числом мест на поверхности растущего кристалла для присоединения атомов, поступающих из жидкой фазы, и особенностями переноса на границе раздела.

Оборудование для выращивания монокристаллического кремния

Установка состоит из следующих блоков

  • печь, включающая в себя тигель (8), контейнер для поддержки тигля (14), нагреватель (15), источник питания (12), камеру высокотемпературной зоны (6) и изоляцию (3, 16);
  • механизм вытягивания кристалла , включающий в себя стержень с затравкой (5), механизм вращения затравки (1) и устройство ее зажима, устройство вращения и подъема тигля (11);
  • устройство для управления составом атмосферы (4 - газовый вход, 9 - выхлоп, 10 - вакуумный насос);
  • блок управления, состоящий из микропроцессора, датчиков температуры и диаметра растущего слитка (13, 19) и устройств ввода;

дополнительные устройства: смотровое окно - 17, кожух - 2.

Технология процесса .

Затравочный монокристалл высокого качества опускается в расплав кремния и одновременно вращается. Получение расплавленного поликремния происходит в тигле в инертной атмосфере ( аргона при разрежении ~104 Па. ) при температуре, незначительно превосходящей точку плавления кремния Т = 1415 ° С. Тигель вращается в направлении противоположном вращению монокристалла для осуществления перемешивания расплава и сведению к минимуму неоднородности распределения температуры. Выращивание при разрежении по­зволяет частично очистить расплав кремния от летучих примесей за счет их испарения, а также снизить образование на внутренней облицовке печи налета порошка монооксида кремния, попадание которого в расплав приводит к образованию дефектов в кристалле и может нарушить монокристаллический рост.

В начале процесса роста монокристалла часть затравочного монокристалла расплавляется для устранения в нем участков с повышенной плотностью механических напряжений и дефектами. Затем происходит постепенное вытягивание монокристалла из расплава.

Для получения монокристаллов кремния методом Чохральского разработано и широко используется высокопроизводительное автоматизированное оборудование, обеспечивающее воспроизводимое получение бездислокационных монокристаллов диаметром до 200 300 мм. С увеличением загрузки и диаметра кристаллов стоимость их получения уменьшается. Однако в расплавах большой массы {60 120 кг) характер конвективных потоков усложняется, что соз­дает дополнительные трудности для обеспечения требуемых свойств материала. Кроме того, при больших массах расплава снижение стоимости становится незначительным за счет высокой стоимости кварцевого тигля и уменьшения скорости выращивания кристаллов из-за трудностей отвода скрытой теплоты кристаллизации. В связи с этим с целью дальнейшего повышения производительности процесса и для уменьшения объема расплава, из которого производится выращивание кристаллов, интенсивное развитие получили установки полунепрерывного выращивания. В таких установках производится дополнительная непрерывная или периодическая загрузка кремния в тигель б,ез охлаждения печи, например путем подпитки расплава жидкой фазой из другого тигля, который, в свою очередь, также может периодически или непрерывно подпитываться твердой фазой. Такое усовершенствование метода Чохральского позволяет снизить стоимость выращиваемых кристаллов на десятки процентов. Кроме того, при этом можно проводить выращивание из расплавов неболь­шого и постоянного объема. Это облегчает регулирование и опти­мизацию конвективных потоков в расплаве и устраняет сегрега­ционные неоднородности кристалла, обусловленные изменением объема расплава в процессе его роста.

Легирование

Для получения монокристаллов п- или р-типа с требуемым удельным сопротивлением проводят соответствующее легирование исходного поликристаллического кремния или расплава. В загру­жаемый поликремний вводят соответствующие элементы (Р, В, As , Sb и др.) или их сплавы с кремнием, что повышает точность ле­гирования.

Окончательная обработка кремния Из установки извлекают кремниевый слиток диаметром 20 - 50 см и длиной до 3 метров. Для получения из него кремниевых пластин заданной ориентации и толщиной в несколько десятых миллиметра производят следующие технологические операции.

1. Механическая обработка слитка:
- отделение затравочной и хвостовой части слитка;
- обдирка боковой поверхности до нужной толщины;
- шлифовка одного или нескольких базовых срезов (для облегчения дальнейшей ориентации в технологических установках и для определения кристаллографической ориентации);
- резка алмазными пилами слитка на пластины: (100) - точно по плоскости (111) - с разориентацией на несколько градусов.
2. Травление. На абразивном материале SiC или Al2O3 удаляются повреждения высотой более 10 мкм. Затем в смеси плавиковой, азотной и уксусной кислот, приготовленной в пропорции 1:4:3, или раствора щелочей натрия производится травление поверхности Si.
3. Полирование - получение зеркально гладкой поверхности. Используют смесь полирующей суспензии (коллоидный раствор частиц SiO2 размером 10 нм) с водой.

В окончательном виде кремний представляет из себя пластину диаметром 15 - 40 см, толщиной 0.5 - 0.65 мм с одной зеркальной поверхностью. Вид пластин с различной ориентацией поверхности и типом проводимости приведен на рисунке 6.

Основная часть монокристаллов кремния, получаемых методом Чохральского, используется для производства интегральных мик­росхем; незначительная часть (около 2 %) идет на изготовление сол­нечных элементов. Метод является оптимальным для изготовления приборов, не требующих высоких значений удельного сопротивле­ния (до 25 Ом · см) из-за загрязнения кислородом и другими примеся­ми из материала тигля.

Бестигельной зонной плавки (БЗП)

Выращивание кристаллов кремния методом бестигельной зонной плавки (БЗП) осуществляют на основе одновиткового индуктора (типа «игольного ушка»), внутренний диаметр которого меньше диа­метра исходного поликристаллического стержня и кристалла. Во всех современных системах зонной плавки используется стационар­ное положение индуктора, а поликристаллический стержень и рас­тущий монокристалл перемещаются. Скорость выращивания крис­таллов методом БЗП вдвое больше, чем по методу Чохральского, благодаря более высоким градиентам тем

К-во Просмотров: 386
Бесплатно скачать Реферат: Технология получения монокристаллического Si