Реферат: Температурный расчет с помощью вычислений информационной математики

Метод Зейделя заключается в следующем. Выбрав вектор началь­ного приближения

y(ср)=(y1,y2,...,yn)

подставим его компоненты в правую часть первого уравнения систе­мы и вычислим первую компоненту y`1 нового вектора y`(ср) . В правую часть второго уравнения подставим компоненты (y`1,y2,y3,...,yn) и вычислим вторую компоненту y`2'нового вектора. В третье уравнение подставим (y`1,y`2,y3,...,yn) и т.д. Очевидно,подстановкой в каждое уравнение мы, дойдя до последнего уравнения, обновим все компоненты исходного вектора и получим первое приближение к ре­шению

y`(ср)=(y`1,y`2,y`3,...,y`n)

Далее , взяв в качестве исходного вектор у`(ср) , выполним вторую итерацию и получим y``(ср). Этот процесс будем продолжать до до­стижения заданной степени точности.


Оценка погрешности приближений процесса Зейделя

Для оценки погрешности прежде всего вычисляют показатель скорости сходимости


То есть для каждой строки матрицы коэффициентов системы вычисляется сумма модулей коэффициентов, лежащих правее главной диагонали :


и сумма модулей коэффициентов, лежащих левее главной диагонали:

Для каждой i-й строки (i =1,2,...,n ) вычисляется отноше­ние

и в качестве берется максимальное из этих отношений. Чем меньше окажется , тем большей будет скорость сходимости.

Для процесса Зейделя справедлива следующая оценка погрешнос­ти К-го приближения:

(i,j=1,2,...,n)


то есть модуль отклонения любого i -го корня системы в К-м приближении от точного значения того же корня не больше, чем умноженное на множитель максимальное из при­ращений корней, полученных в результате перехода от (K-1) -го приближения к К-му.

Если задаться абсолютной погрешностью и потребовать выполнения условия

(j=1,2,...,n)


то выполнится и условие

(i=1,2,3,...,n),

то есть заданная степень точности на К-й итерации будет достигнута. На практике это означает, что после каждой итерации необходимо вы­делить тот корень, изменение которого по сравнению с предыдущим значением оказалось наибольшим по модулю. Модуль приращения этого корня необходимо умножить на и сравнить результат с выбран­ной абсолютной погрешностью.


Достаточные условия сходимости процесса Зейделя


Если модули коэффициентов системы удовлетворяют хотя бы одному из условий

(i,j=1,2,3,...,n)


то процесс Зейделя для соответствующей приведенной системы сходит­ся к её единственному решению при любом выборе начального вектсра y(ср) Такие системы называют системами с диагональным преоблада­нием.

Метод Зейдедя имеет свойство, позволяющее обеспечить сходимость процесса для любых систем уравнений с неособенной матрицей коэфициентов.

Если обе части систем с неособенной матрицей коэфициентов А=[aij] умножить слева на транспонировнную матриц A*[aij] , то будет получена новая, равносильная исходной система, которая называется нормальной. Процесс Зейделя для приведенной системы, полученной из нормальной, всегда сходится независимо от выбора нача льного приближения.

К-во Просмотров: 633
Бесплатно скачать Реферат: Температурный расчет с помощью вычислений информационной математики