Реферат: Теория игр

Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, состоянию информации и т.д.

В зависимости от количества игроков различают игры двух и n игроков. Первые из них наиболее изучены. Игры трёх и более игроков менее исследованы из-за возникающих принципиальных трудностей и технических возможностей получения решения. Чем больше игроков - тем больше проблем.

По количеству стратегий игры делятся на конечные и бесконечные. Если в игре все игроки имеют конечное число возможных стратегий, то она называется конечной . Если же хотя бы один из игроков имеет бесконечное количество возможных стратегий игра называется бесконечной .

По характеру взаимодействия игры делятся на:

бескоалиционные : игроки не имеют права вступать в соглашения, образовывать коалиции;

коалиционные (кооперативные) – могут вступать в коалиции.

В кооперативных играх коалиции наперёд определены.

По характеру выигрышей игры делятся на: игры с нулевой суммой (общий капитал всех игроков не меняется, а перераспределяется между игроками; сумма выигрышей всех игроков равна нулю) и игры с ненулевой суммой .

По виду функций выигрыша игры делятся на: матричные, биматричные, непрерывные, выпуклые, сепарабельные, типа дуэлей и др.

Матричная игра – это конечная игра двух игроков с нулевой суммой, в которой задаётся выигрыш игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 2, столбец – номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).

Для матричных игр доказано, что любая из них имеет решение и оно может быть легко найдено путём сведения игры к задаче линейного программирования.

Биматричная игра – это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец – стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице – выигрыш игрока 2.)

Для биматричных игр также разработана теория оптимального поведения игроков, однако решать такие игры сложнее, чем обычные матричные.

Непрерывной считается игра, в которой функция выигрышей каждого игрока является непрерывной в зависимости от стратегий. Доказано, что игры этого класса имеют решения, однако не разработано практически приемлемых методов их нахождения.

Если функция выигрышей является выпуклой, то такая игра называется выпуклой . Для них разработаны приемлемые методы решения, состоящие в отыскании чистой оптимальной стратегии (определённого числа) для одного игрока и вероятностей применения чистых оптимальных стратегий другого игрока. Такая задача решается сравнительно легко.

Матричные игры

Решение матричных игр в чистых стратегиях.

Матричная игра двух игроков с нулевой суммой может рассматриваться как следующая абстрактная игра двух игроков.

Первый игрок имеет m стратегий i = 1,2,...,m , второй имеет n стратегий j = 1,2,...,n. Каждой паре стратегий (i,j ) поставлено в соответствие число аij , выражающее выигрыш игрока 1 за счёт игрока 2, если первый игрок примет свою i- ю стратегию, а 2 – свою j -ю стратегию.

Каждый из игроков делает один ход: игрок 1 выбирает свою i -ю стратегию (i= ), 2 – свою j -ю стратегию (j =), после чего игрок 1 получает выигрыш аij за счёт игрока 2 (если аij < 0, то это значит, что игрок 1 платит второму сумму | аij | ). На этом игра заканчивается.

Каждая стратегия игрока i=; j = часто называется чистой стратегией.

Если рассмотреть матрицу

А =

то проведение каждой партии матричной игры с матрицей А сводится к выбору игроком 1 i -й строки, а игроком 2 j -го столбца и получения игроком 1 (за счёт игрока 2) выигрыша аij .

Главным в исследовании игр является понятие оптимальных стратегий игроков. В это понятие интуитивно вкладывается такой смысл: стратегия игрока является оптимальной, если применение этой стратегии обеспечивает ему наибольший гарантированный выигрыш при всевозможных стратегиях другого игрока. Исходя из этих позиций, игрок 1 исследует матрицу выигрышей А следующим образом: для каждого значения i (i = ) определяется минимальное значение выигрыша в зависимости от применяемых стратегий игрока 2

аij (i = )

т.е. определяется минимальный выигрыш для игрока 1 при условии, что он примет свою i -ю чистую стратегию, затем из этих минимальных выигрышей отыскивается такая стратегия i = iо , при которой этот минимальный выигрыш будет максимальным, т.е. находится

аij = = (1).

Определение . Число , определённое по формуле (1) называется нижней чистой ценой игры и показывает, какой минимальный выигрыш может гарантировать себе игрок 1, применяя свои чистые стратегии при всевозможных действиях игрока 2.

Игрок 2 при оптимальном своём поведении должен стремится по возможности за счёт своих стратегий максимально уменьшить выигрыш игрока 1. Поэтому для игрока 2 отыскивается

аij

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 1602
Бесплатно скачать Реферат: Теория игр