Реферат: Теория принятий решений

Во-вторых, цели участников процесса принятия решений - различны и часто противоположны.

В третьих, критерии правильности решения зависят не только от характера задачи, ее цели и т.п., но и от того, насколько беспристрастно они выбраны, в противном случае это будет подгонка под ответ.

В четвертых, трудности выбора решения могут скрываться и в самой постановке задачи, если требуется достижение нереальных результатов получение максимальной прибыли при минимальном риске, строительство в минимальные сроки при максимальном качестве, максимальный ущерб противнику в военных действиях при минимальных собственных потерях и т.п.

В целом, все принимаемые в теории принятия решений принципы оптимальности прямо или косвенно отражают идеи устойчивости, выгодности и справедливости.

Понятия устойчивости и выгодности в экономике легко формализуются. В общем виде говорят об условных принципах устойчивости и выгодности: полученное решение устойчиво с той точки зрения, что участникам процесса принятия решений не вывгодно от него отклоняться, а выгодно - потому, что все стремяться по возможности увеличить свой выигрыш или уменьшить проигрыш. Такое решение в ТПР называется равновесным, оно обеспечивает всем участникам максимально гарантированный выигрыш.

Если реализация принципов выгодности и устойчивости основана на исходных условиях задачи, то принцип справедливости устанавливается извне. Участники процесса принятия решений должны заранее их оговорить. Часто компромиссное решение, основанное на принципах справедливости не совпадает с равновесным.

В договоре между участниками может участвовать еще одно посторонее лицо: арбитр, который и предлагает компромиссное решение, отвечающее некоторым "принципам справедливости". Эти принципы часто формулируются в виде набора аксиом. Это трудная и важная задача, так как на этой системе аксиом строится все арбитражное решение. Система аксиом должна отвечать нормам морали общества, которые в значительной мере отражаются в существующем законодательстве, быть полной и непротиворечивой, то есть должна позволять получить решение и причем единственное. Арбитр, как всякий судья, должен обладать авторитетом и моральным правом принимать решения, то есть пользоваться безусловным доверием всех участников ППР. В противном случае принятое решение не будет выполняться, так как единственным стимулом к его выполнению является согласие, договоренность сторон. Если система аксиом выбрана и принята участниками ППР, то получение решения осуществляется формальными методами.

Глава1. ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ ОПРЕДЕЛЕННОСТИ

В качестве методов математического моделирования задач принятия решений в условиях определенности традиционно используются критериальный анализ, линейное и нелинейное программирование. Все эти подходы основаны на систематизированном анализе, в процессе которого используемые количественные оценки должны помочь ЛПР уяснить для себя, какой курс действий ему следует выбрать.

Линейное и нелинейное программирование используется в задачах с одним критерием выбора решения и набором ограничений на веденные переменные. В курсе ТПР эти задачи рассматниваютя как задачи однокритериального анализа, то есть частный случай многокритериального анализа.

1.1. Постановка задачи. Основные понятия.

При постановке задачи критериального анализа предполагается, что у ЛПР есть несколько вариантов выбора, несколько альтернатив u U, где U - множество всевозможных альтернатив, включающее не меннее двух элементов. В зависимости от характера задачи множество U может быть как непрерывным, так и дискретным. Если решается задача стратегического плана, то под u обычно понимается стратегия, то есть набор правил, определяющих состав и порядок действий в любой из возможных ситуаций, а множество U - в этом случае дискретно и конечно.

При решении задач тактического плана, например, выбора варианта какого-либо проекта, распределения средств между обьектами, определения состава различных видов городского транспорта множество U может быть как непрерывным, так и дискретным.

В нашем курсе будем полагать, что U дискретно и счетно, а u - эмпирический обьект, задаваемый "своим именем" ( например, названия банков ).

Выбор из множества альтернатив происходит на основании заранее заданной системы или функции предпочтений Р(р). В критериальном анализе предпочтения р задаются в виде некоторого набора характеристик, которые обозначаются k и называются критериями .

В общем виде: k - функция от альтернативы u: k(u)

U = ( u1 ,u2 ,...un ), n - число альтернатив

K(u) = ( k1 (u), k2 (u),...km (u)), где m - число частных критериев ki (u)

1.Если m = 1 - однокритериальная задача, то есть задача линейного программирования.

2.Если m > 1, но k(u) P k(v) - тривиальный вариант, так как u всегда лучше v.

3.Если по одним критериям вариант u предпочтительнее варианта v, а по другим - наоборот, то это задача критериального анализа, способы решения которой будут расмотрены в этом курсе.

Введем обозначения: K (u) P K (v) - вариант u предпочтительнее, K (u) I K (v) - одинаковы по предпочтени,K(u) N K(v) - несравнимы.

1.2. Формирование критериальной системы.

Для формулировки задачи критериального анализа необходимо:

1. Четко сформулировать цель, задачу и требуемый результат

2. Классифицировать характеристики вариантов

3. Беспристрастно выбрать критерии

Требования к критериальной системе:

1. Соответствие критериев цели и задаче.

2. Критичность. Критерий должен быть "чувствительным" к изменению варианта выбора.

К-во Просмотров: 1015
Бесплатно скачать Реферат: Теория принятий решений