Реферат: Теория принятий решений
4. Полнота и минимальность. С одной стороны, критериальная система должна как можно полнее описывать варианты выбора, но чем векторный критерий меньше, тем проще решается задача. Полнота критериальной системы формально означает, что введение дополнительного частного критерия не изменит вариант выбора, все частные критерии должны быть учтены.
5. Декомпозируемость. Векторный критерий должен допускать упрощение задачи путем перехода к рассмотрению отдельных частных критериев вне зависимости от других. Это требование сводится к вопросу о независимости частных критериев по предпочтению.
В каждом конкретной задаче необходимо проводить проверку критериев на независимость, которая сводится к следующему:
Если есть U = ( u,v,s,t ) - множество альтернатив и варианты u и v такие, что для "j ¹ i верно kj (u) = kj (v), а ki (u) ¹ ki (v), причем К(u) P К(v); варианты s и t такие, что для "j ¹ i верно kj (s) = kj (t) ¹ kj (u), при k i (s) = k i (u) , ki (t) = ki (v) . Если отсюда следует, что К (s) Р К(t), то говорят, что i-тый векторный критерий независим по предпочтению от всех частных критериев. В противном случае методически удобнее при решении таких задач перейти к новой постановке, где предпочтительным было бы изменение всех частных критериев, например в сторону увеличения. При этом, если в исходной постановке задачи для части критериев предпочтительнее меньшее значение, то в новой постановке значения таких критериев рассматриваются с противоположным знаком.
Независимость по предпочтению частных критериев дает возможность перейти от задачи сравнения векторных с m частными критериями к решению m однокретериальных задач сравнения частных критериев между собой. В реальных задачах допущение о независимости частных критериев по предпочтению зависит от характера решаемого вопроса. Например, если в качестве частных критериев используют затраты, надежность, прибыль, льготы, то для них всегда наиболее предпочтительным будет экстремальное значение ( min или max ) вне зависимости от других частных критериев.
Если частные критерии определяют структуру сравниваемых обьектов, то например, рост и вес человека, количество наземного и подземного транспорта в городе, количество тепловых, атомных и гидроэлектростанций, то они обычно зависимы по предпочтению.
Необходимо отметить, что переход от независимых частных критериев к зависимым иногда связан с более "тонким" анализом самих предпочтений.
1.3. Аксиома Парето и эффективные варианты.
Сравнение между собой векторных критериев представляет собой достаточно сложную проблему.
Пример . U = (u,v,s,t) - множество альтернатив
k1 | k2 | k3 | |
u | 5 | 3 | 7 |
v | 4 | 3 | 6 |
s | 5 | 2 | 7 |
t | 6 | 3 | 1 |
k (u) ³ k (v), "i =1:3, поэтому K(u)P K(v).
k (u) ³ k (s), "i =1:3, поэтому K(u) P K(s), варианты s и v оказались доминируемыми, а остальные векторные оценки сравнить невозможно: k (u) N k (t) Таким образом все множество векторных оценок делится на два подмножества: эффективных { k(u),k(t)} и неэффективных { k(v), k(s)} векторных оценок. Из приведенного примера можно сделать важный вывод: если вариант имеет абсолютный max по какому-либо показателю, то он не может быть доминирован.
Аксиома Парето : Пусть даны две векторные оценки:
K(u)= ( k1 (u), k2 (u), ... km (u)) и
K(v)= ( k1 (v), k2 (v), ... km (v))
K(u) P K(v), если существует хотя бы одно j от 1 до m такое что:
" i ¹ j ki (u) I ki (v), или ki (u) P ki (v), а kj (u) P kj (v).
P - "предпочтительность в смысле Парето".
Все векторные оценки, для которых не существует более предпочтительных в смысле Парето векторных оценок, образуют множество Hо эффективных векторных оценок, а соответствующие варианты - множество vо - эфективных вариантов.
Для нашего примера: H = { K(u), K(v), K(s), K(t)}, Hо = { K(u), K(t)} - множество эффективных векторных оценок. Определение множеств эффективных векторных оценок обычно не позволяет получить в чистом виде решение задачи, но является важным и обязательным этапом, так как практически всегда происходит сокращение имеющихся вариантов, кроме того, для Hо и vо могут выполняться допущения не верные для H и v, то есть задача в дальнейшем может упрощаться за счет дополнительных правил или информации после сокращения.
Принадлежность к v полученного решения - некоторая гарантия правильности результата. Полученное множество оптимальных векторных оценок последовательно суживается с использованием дополнительной информации, искусственных методов или с помощью введения новых правил. Рассмотрим некоторые из этих подходов.
1.4. Важность частных критериев и использование дополнительной информации для принятия решения.
Если при выборе того или иного варианта использование принципа Парето не дает единственного решения, необхлдимо найти способы сужения возможного выбора из множества эффективных вариантов. До сих пор предполагалось, что все критрии одинаковы по важности и одинаково влияют на предпочтительность векторного критерия. На самом деле часто превосходство по наиболее важным частным критериям ведет к предпочтительности векторной оценки в целом. Понятие относительной важности частных критериев возможно будет определить только когда они будут сравнимы, ( иначе как определить: что лучше - 200 тонн или 10 км ). Чтобы разшить эту проблему используют процедуру нормализации.
Частные критерии считаются нормализованными , если области их изменения Н i = 1 : m совпадают.
Нормализацию проводят различными способами - от применения более грубых шкал при измерении оценок, до вычисления разного рада статистик. Наибольшее распространение получила статистика вида :
k i (v) - min k i (v)
ki ‘ (v) = --------------------------
max i k (v) - min i k (v)
Она удобна тем, что все k i (v)Î [0 ; 1], причем min k’i (v) = 0, max k’i (v) = 1. Таким образом, нормализованный частный критерий показывает, на какую часть всего диапазона изменений [0 ; 1] данный частный критерий превосходит минимальное значение.