Реферат: Тепловые преобразователи
Конвекция. Полный тепловой поток в результате теплоотдачи определяется формулой Ньютона
, (2)
где x — коэффициент теплоотдачи, Вт/(м2 -К); S — поверхность тела; ΔQ — разность температур окружающей среды и тела. Коэффициент теплоотдачи при естественной и вынужденной конвекции рассчитывается на основании теорий теплового и геометрического подобий.
При искусственной конвекции при поперечном омывании цилиндра (рис. 1, а) коэффициент теплоотдачи для газов выражается формулой
(3)
где d — диаметр цилиндра; υ — скорость движения газа; ν — кинематическая вязкость, равная абсолютной вязкости, отнесенной к плотности вещества; λ— теплопроводность газа; с ип являются функциями скорости газа и размеров цилиндра и определяются по предвари тельно рассчитанной величине, называемой критерием Рейнольдса, Re = vd / v , из табл. 11-1.
а) б)
90° 70° 50° 30° 10°
Рис. 1
Q,ºC |
ν, 1·10-6 м2 /c |
λ, 1·10-2 Вт/(м·К) |
0 | 13,70 | 2,33 |
20 | 15,70 | 2,56 |
100 | 23,78 | 3,02 |
500 | 80,40 | 5,46 |
Таблица 1 Таблица 2
Rе | с | n |
5-80 | 0,93 | 0,40 |
80-5·103 | 0,715 | 0,46 |
5·103 | 0,226 | 0,60 |
При расчете коэффициента теплоотдачи для жидкости в формулу. (3) входит критерий Прандтля Рг:
.
Критерий Прандтля Рг = v / a зависит от кинематической вязкости ν и температуропроводности а, физический смысл которой состоит в том, что она является мерой скорости выравнивания температур различных точек жидкости. Температуропроводность зависит от теплопроводности λ, плотности у и удельной теплоемкости вещества с и определяется формулой а = λ/(су).
Приведенные формулы для теплоотдачи цилиндра в поперечном потоке справедливы только для случая, когда угол ψ, составленный осью цилиндра и направлением потока и называемый углом атаки, равен 90°. Зависимость коэффициента теплоотдачи от угла атаки представлена на рис. 1,б.
В табл. 2 и 3 приведены основные параметры соответственно сухого воздуха при Р = 105 Па и воды, необходимые для расчета коэффициентов теплоотдачи. Температура, при которой определены параметры в табл. 11-2 и 11-3, считается как среднеарифметическая температура тела и среды.
Таблица 3
Q,ºC |
ν, 1·10- 6 м2 /c |
λ, Вт/(м·К) |
а, 1·10- 7 м2 /c |
20 | 1,6 | 0,6 | 1,42 |
60 | 0,479 | 0,66 | 1,61 |
80 | 0,366 | 0,69 | 1,64 |
Тепловое излучение свойственно всем телам, и каждое из них непрерывно излучает и поглощает энергию. Разность между излучаемой и поглощаемой телом лучистой энергией отлична от нуля, если температура тел, участвующих во взаимном обмене лучистой энергией, различна. По закону Стефана — Больцмана полное количество энергии, излучаемой в единицу времени единицей поверхности, имеющей температуру Q, равно , где σо = 5,7- 10-8 Вт/(м2 -К4 ) — константа излучения абсолютно черного тела.
В технических расчетах этот закон применяется в более удобной
форме: Ео = Со (Q/100)4 , где Со — коэффициент лучеиспускания абсолютно черного тела: Со = 5,7 Вт/(м2 -К4 ). Закон Стефана — Больцмана применим и к реальным серым телам, но их коэффициент лучеиспускания С рассчитывается с учетом относительной излучательной
способности или степени черноты тела ε, т. е. С = Со ε. Значение ε изменяется в пределах от нуля до единицы.
Количество поглощаемой телом лучистой энергии также зависит от степени черноты тела и определяется формулой Е = εEэф , где Езф — извне падающее эффективное излучение окружающих тел. При выводе формул лучистого теплообмена между телами необходимо учитывать, кроме лучеиспускательной, поглощательной и отражательной способности тел, их размеры и направление излучений. Относительно простые формулы могут быть приведены только для теплообмена между плоскими параллельными поверхностями и между двумя поверхностями в замкнутом пространстве, когда одна из поверхностей охватывает другую, обязательно выпуклую поверхность (рис. 1, в).