Реферат: Тепловые преобразователи
где
2. ТЕРМОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ, ИХ ПРИНЦИП ДЕЙСТВИЯ И ПРИМЕНЯЕМЫЕ МАТЕРИАЛЫ
Явление термоэлектричества было открыто в 1823 г. Зеебеком и заключается в следующем. Если составить цепь из двух различных проводников (или полупроводников) А и В, соединив их между собой концами (рис. 4, а), причем температуру Q1 одного места соединения сделать отличной от температуры QО другого, то в цепи потечет ток под действием ЭДС, называемой термоэлектродвижущей силой S: (термо-ЭДС) и представляющей собой разность функций температур мест соединения проводников:
.
Подобная цепь называется термоэлектрическим преобразователем или иначе термопарой; проводники, составляющие термопару, — термоэлектродами, а места их соединения — спаями.
Термо-ЭДС при небольшом перепаде температур между спаями можно считать пропорциональной разности температур: ЕАВ = SAB AQ .
Опыт показывает, что у любой пары однородных проводников, значение термо-ЭДС зависит только от природы проводников и от температуры спаев и не зависит от распределения температуры вдоль проводников, Термоэлектрический контур можно разомкнуть в любом месте и включить в него один или несколько разнородных проводников. Если все появившиеся при этом места соединений находятся при одинаковой температуре, то не возникает никаких паразитных термо-ЭДС.
Можно разомкнуть контур в месте контактирования термоэлектродов А и В и вставить дополнительный проводник С между ними (рис. 4,6). Значение термо-ЭДС в этом случае определится как Е = ЕАВ ( Q 1 ) + ЕВС ( Q 0 ) + ЕСА ( Q о) = ЕАВ ( Q 1 ) + ЕВА ( Q 0 ) = = ЕАВ (Q1 ) — ЕАВ (Q0 ), так как если два любых проводника А и В имеют по отношению к третьему С термо-ЭДС ЕА с и ЕВ с, то термо-ЭДС термопары А В = ЕАВ = ЕАС + ЕСВ .
Можно разорвать также один из термоэлектродов и вставить дополнительный проводник в место разрыва (рис. 4, в). Значение термо-ЭДС в этом случае будет тем же, что и в предыдущем. Действительно,
Е = ЕАВ (Qх ) Ч- Евс (Q1 ) + ЕС в (Qа ) + ЕВА (Qв ) =
= ЕАВ ( Q1 ) - ЕАВ ( Qв ).
Таким образом, прибор для измерения термо-ЭДС может быть включен как между свободными концами термопары, так и в разрыв одного из термоэлектродов.
Явление термоэлектричества принадлежит к числу обратимых явлений, обратный эффект был открыт в 1834 г. Жаном Пельтье и назван его именем. Если через цепь, состоящую из двух различных проводников или полупроводников, пропустить электрический ток, то теплота выделяется в одном спае и поглощается в другом. Теплота Пельтье связана с силой тока линейной зависимостью в отличие от теплоты Джоуля, и нагревание или охлаждение спая зависит от направления тока через спай.
Во второй половине XIX в. Томсоном был открыт эффект, заключающийся в установлении на концах однородного проводника, имеющего температурный градиент, некоторой разности потенциалов и в выделении дополнительной тепловой мощности при прохождении тока по этому проводнику. Однако ЭДС Томсона и дополнительная тепловая мощность настолько малы, что в практических расчетах ими обычно пренебрегают.
КПД термоэлектрического генератора зависит от разности температур и свойств материалов и для существующих материалов очень мал (при DQ = 300 °С не превышает h= 13%, а при DQ = 100 °С , h = 5%).
КПД термоэлектрического подогревателя или холодильника также очень мал: для холодильника КПД при температурном перепаде 5 °С составляет 9%, а при перепаде 40°С — только 0,6%.
Тепловой баланс охлаждаемого в результате эффекта Пельтье спая определяется уравнением
где П12 I — теплота, поглощаемая в спае за счет эффекта Пельтье; I — ток через спай; П12 — коэффициент Пельтье, зависящий от материалов спая; I2 R— выделяющаяся в термоэлементе теплота Джоуля, часть которой поступает на холодный спай; G ' e (Qнагр — Q0ХЛ ) — тепловой поток, обусловленный разностью температур нагреваемого и охлаждаемого спаев;' G ' Q — тепловая проводимость термоэлемента;Gе (Qокр — Qохл) — тепловой поток, возникающий в результате теплообмена между, окружающей средой и охлаждаемым спаем.
Как видно из приведенного уравнения, температура холодного спая будет уменьшаться при увеличении тока за счет эффекта Пельтье, в то же время с увеличением тока увеличивается теплота Джоуля, и эффект нагревания при больших токах снижает эффект охлаждения. Поэтому минимальная температура холодного спая достигается при некотором оптимальном токе.
В измерительной технике термопары получили широкое распространение для измерения температур. Кроме того, полупроводниковые термоэлементы используются как обратные тепловые преобразователи, преобразующие электрический ток в тепловой поток.
Таблица 4
Материал | Термо-, ЭДС, мВ | Материал | Термо-ЭДС, мВ |
Кремний | +44,8 | Свинец | +0,44 |
Сурьма | +4,7 | Олово | +0,42 |
Хромель | +2,4 | Алюминий | +0,40 |
Нихром | +2,2 | Графит | +0,32 |
Железо | +1,8 | Уголь | +0,30 |
Сплав (90% Pt + 10% Ir) | +1,3 | Ртуть | 0,00 |
Молибен | +1,2 | Палладий | -0,57 |
Вольфрам | +0,8 | Никель | -1,5 |
Манганин | +0,76 | Алюмель | -1,7 |
Медь | +0,76 | Сплав (60%Au + 30%Pd + | -2,31 |
Золото | +0,75 | 10%Pt) | |
Серебро | +0,72 | Константан | -3,4 |
Иридий | +0,65 | Копель | -4,5 |
Родий | +0,64 | Пирит | -12,1 |
Сплав (90% Pt + 10%Rh) | +0,64 | Молибденит | от-69 до-104 |
Материалы, применяемые для термопар . В табл. 4 приведены термо-ЭДС, которые развиваются различными термоэлектродами в паре с платиной при температуре рабочего спая Q1 = 100 °С и температуре свободных концов Q0 = 0 °С. Зависимость термо-ЭДС от температуры в широком диапазоне температур обычно нелинейна, поэтому данные таблицы нельзя распространить на более высокие температуры.
При конструировании термопар, естественно, стремятся сочетать термоэлектроды, один из которых развивает с платиной положительную, а другой — отрицательную термо-ЭДС. При этом необходимо учитывать также пригодность того или иного термоэлектрода для применения в заданных условиях измерения (влияние на термоэлектрод среды, температуры и т. д.).
Материалы, применяемые в промышленных термопарах, обусловлены ГОСТ 6616—74. Однако используется и ряд специальных термопар, например при измерениях тепловой радиации, для измерений температуры нагревателей в термоанемометрах и вакуумметра, в термоэлементах термоэлектрических амперметров, вольтметров и ваттметров.
Термопары этого типа работают при сравнительно небольшихтемпературах, но для повышения чувствительности преобразователей мощности в температуру должны обладать минимальной теплоемкостью и минимальным коэффициентом теплоотдачи. Поэтому такие термопары выполняются из тонкой проволоки диаметром d 5 10 мкм.