Реферат: Тепловые преобразователи

Для повышения выходной ЭДС используется несколько термопар, образующих термобатарею. На рис. 6 показан чувствительный элемент радиационного пирометра. Рабочие спаи термопар расположены на черненом лепестке, поглощающем излучение; свободные концы — на массивном медном кольце, служащем токоотводом и прикрытом экраном. Благодаря массивности и хорошей теплоотдаче кольца температуру свободных концов можно считать постоянной и равной комнатной.


3. УДЛИНИТЕЛЬНЫЕ ТЕРМОЭЛЕКТРОДЫ, ИЗМЕРИТЕЛЬНЫЕ ЦЕПИ, ПОГРЕШНОСТИ ТЕРМОПАР

Удлинительные термоэлектроды. Свободные концы термопары должны находиться при постоянной температуре (рис. 7). Однако не всегда возможно сделать термоэлектроды термопары настолько длинными и гибкими, чтобы ее свободные концы размещались в достаточном удалении от рабочего спая. Кроме того, при использовании благородных металлов делать длинные термоэлектроды экономически невыгодно, поэтому приходится применять провода из другого материала. Соединительные провода А1 и В1 (рис. 7), идущие от зажимов в головке термопары до сосуда объемом V , тем пературу в котором желательно поддерживать постоянной, называют удлинительными термоэлектродами. Далее для соединения с измерительным прибором можно использовать обычные провода.

Чтобы при включении удлиниnельных термоэлектродов из материалов, отличных от материалов основных термоэлектродов, не изменилась термо-ЭДС термопары, необходимо выполнить два условия. Первое — места присоединения удлинительных термоэлектродов к основным термоэлектродам в головке термопары должны иметь одинаковую температуру. И второе — удлинительные термоэлектроды должны быть термоэлектрически идентичны основной термопаре, т. е. иметь ту же термо-ЭДС в диапазоне возможных температур места соединения термоэлектродов в головке термопары (примерно в диапазоне от 0 до 200 °С).

Для термопары платинородий — платина применяются удлинительные термоэлектроды из меди и сплава ТП, образующие термопару, термоидентичную термопаре платинородий — платина в пределах до 150 °С. Для термопары хромель — алюмель удлинительные термоэлектроды изготовляются из меди и константана. Для термопары хромель — копель удлинительными являются основные термоэлектроды, но выполненные в виде гибких проводов.

При неправильном подключении удлинительных термоэлектродов возникает весьма существенная погрешность.

Погрешность, обусловленная изменением температуры свободных концов термопары . Градуировка термопар осуществляется при температуре свободных концов, равной нулю. Если при практическом использовании термоэлектрического термометра температура свободных концов будет отличаться от 0 °С на величину + Q0 , то измеренная ЭДС будет меньше и необходимо ввести соответствующую поправку в показания термометра.

Однако следует иметь в виду, что из-за нелинейной зависимости между ЭДС термопары и температурой рабочего спая поправка DQ к показаниям указателя Q', градуированного непосредственно в градусах, не будет равна температуре Q0 свободных концов, что очевидно из рис. 9.

Для определения температуры необходимо воспользоваться градуировочной таблицей для данной термопары, определить ЭДС как Е = Еизм + D Е (Q0 ) и затем по скорректированному таким образом значению Е найти Q. Приближенно значение погрешности может быть определено как


DQ = k Q0 ,

где k — поправочный коэффициент на температуру свободных концов. Значение k различно для каждого участка кривой, поэтому градуировочную кривую разделяют на участки по 100 °С и для каждого участка определяют значение k .

В качестве примера устройства автоматического введения поправки на. температуру свободных концов на рис. 10 схематично показано устройство типа КТ-0,8. В цепь термопары и милливольтметра включен мост, одним из плеч которого является терморезистор RT , помещенный возле свободных концов термопары (остальные плечи моста выполнены из манганиновых резисторов). При температуре в0 мост находится в равновесии и напряжение на его выходной диагонали равно нулю.

При повышении температуры свободных концов сопротивление R , изменяется, мост выходит из равновесия и возникающее напряжение на выходной диагонали моста компенсирует уменьшение термо-ЭДС термопары. Уравновешивание моста при температуре терморезистора, равной нулю, производится изменением сопротивления одного из манганиновых резисторов. Изменение выходного напряжения U вых моста при температуре терморезистора Q до значения, равного уменьшению термо-ЭДС D Е, так, чтобы ивых (0) — — АЕ (0) = 0, производится изменением напряжения питания моста, т. е. сопротивления R . Вследствие нелинейности характеристики термопар полной коррекции погрешности при помощи описываемого устройства получить не удается, однако погрешность значительно уменьшается.

Погрешность, обусловленная изменением сопротивления измерительной цепи . В термоэлектрических термометрах для измерения термо-ЭДС применяют как обычные милливольтметры, так и потенциометры с ручным или автоматическим уравновешиванием на предел измерения до 100 мВ.

В тех случаях, когда термо-ЭДС измеряется милливольтметром, может возникнуть погрешность из-за изменения сопротивлений всех элементов, составляющих цепь термо-ЭДС. Измерительная цепь термопары включает в себя рабочие термоэлектроды, удлинительные термоэлектроды и соединительные провода или линию. Сопротивление рабочих термоэлектродов из неблагородных металлов не превышает 1 Ом, сопротивление рабочих термоэлектродов из благородных металлов больше. Кроме того, термоэлектроды, за редким исключением, выполняются из материалов, имеющих относительно высокий ТКС, и при изменении температуры на несколько сотен градусов внутреннее сопротивление термопары существенно возрастает.

Чтобы уменьшить погрешность от падения напряжения на внутреннем сопротивлении термопары, милливольтметры, как правило, градуируются по температуре в комплекте с термопарой с указанием сопротивления линии (обычно 5 Ом), которое подгоняется изменением сопротивления добавочной катушки непосредственно при монтаже прибора. При соблюдении этих условий погрешность возникает при изменении сопротивления термоэлектродов в результате окисления в процессе эксплуатации, при изменении сопротивления термопары при разных глубинах ее погружения, при изменении сопротивления удлинительных термоэлектродов и соединительных проводов в зависимости от темлературы окружающей среды.


4. ТЕРМОРЕЗИСТОРЫ, ОСНОВЫ ИХ РАСЧЕТА И ПРИМЕНЯЕМЫЕ МАТЕРИАЛЫ

Для измерения температур используются терморезисторы из материалов, обладающих высокостабильным ТКС, линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. К таким материалам в первую очередь относится платина. Благодаря своей дешевизне широко распространены медные терморезисторы, применяются также вольфрамовые и никелевые.

Сопротивление платиновых терморезисторов в диапазоне температур от 0 до +650 °С выражается соотношением RQ = R0 (1 + АQ + ВQ2 ), где R0 — сопротивление при 0 °С; Q— температура, °С. Для платиновой проволоки с отношением R 100 / Ro = 1,385 значения А = 3,90784·10-3 Кг-1 ; В = 5,7841-10-7 К-2 . В интервале температур от 0 до —200 °С зависимость сопротивления платины от температуры имеет вид RQ = R0 [1 + АQ + ВQ2 + С (Q — 100) Q3 ], где С = = —4,482-10-12 К-4 . Промышленные платиновые термометры согласно ГОСТ 6651—78 используются в диапазоне температур от —260 до + 1100 °С.

Миниатюрные высокоомные платиновые терморезисторы изготовляют путем вжигания или нанесения иным путем платиновой пленки на керамическое основание толщиной 1—2 мм. При ширине пленки 0,1—0,2 мм и длине 5—10 мм сопротивление терморезистора лежит в пределах 200—500 Ом. Такого рода термочувствительные элементы при нанесении пленки с обеих сторон используются для измерения температурного градиента и имеют порог чувствительности (1 ¸ 5)10-5 К/м.

При расчете сопротивления медных проводников в диапазоне температур от —50 до +180 °С можно пользоваться формулой RQ = R0 (1 + aQ), где a = 4,26-10-3 К-1 ; R0 — сопротивление при 0 °С. Если для медного терморезистора требуется определить сопротивление R Q , (при температуре Q2 ) по известному сопротивлению R Q 1

(при температуре Q1 ), то следует пользоваться формулой

R Q 2 = R Q 1 (1 + aQ2 )/(1 + aQ1 ).

Медный терморезистор можно применять только до температуры 200°С в атмосфере, свободной от влажности и корродирующих газов. При более высоких температурах медь окисляется. Нижний предел температуры для медных термометров сопротивления равен —200°С, хотя при введении индивидуальной градуировки возможно их применение вплоть до —260 °С.

Погрешности, возникающие при измерении температуры термометрами сопротивления, вызываются нестабильностью во времени начального сопротивления термометра и его ТКС, изменением сопротивления линии, соединяющей термометр с измерительным прибором, перегревом термометра измерительным

К-во Просмотров: 497
Бесплатно скачать Реферат: Тепловые преобразователи