Реферат: Термодинамические потенциалы

Перейдем к использованию химического равновесия в нашем случае.

В общем случае уравнение химической реакции записывается в виде:

(3.54)

Здесь - символы химических веществ, - так называемые, стехиометрические числа. Так, для реакции

Поскольку в качестве параметров системы выбраны давление и температура, которые положены постоянными. Удобно в качестве состояния термодинамического потенциала рассмотреть потенциал Гиббса G . Тогда условие равновесия системы будет заключаться в требовании постоянства потенциала G :

(3.55)

Поскольку мы рассматриваем трехкомпонентную систему, положим . Кроме того, учитывая (3.54), можно записать уравнение баланса для числа частиц ():

(3.56)

Вводя химические потенциалы для каждой из компонент: и учитывая сделанные допущения, находим:

(3.57)

Уравнение (3.57) было впервые получено Гиббсом в 1876г. и является искомым уравнением химического равновесия. Легко заметить, сравнивая (3.57) и (3.54), что уравнение химического равновесия получается из уравнения химической реакции путем простой замены символов реагирующих веществ на их химические потенциалы. Этот прием может быть использован и при записи уравнения химического равновесия для произвольной реакции.

В общем случае решение уравнения (3.57) даже для трех компонент является достаточно загруженным . Это связанно, во-первых, с тем, что даже для однокомпонентной системы получить явные выражения для химического потенциала весьма затруднительно. Во-вторых, относительные концентрации и не являются малыми величинами. То есть невозможно выполнить по ним разложение в ряд. Это еще сильнее усложняет задачу решения уравнения химического равновесия.

Физически отмеченные трудности объясняются необходимостью учета перестройки электронных оболочек атомов, вступающих в реакцию. Это приводит к определенным сложностям микроскопического описания , что сказывается и при макроскопическом подходе.

Поскольку мы условились ограничится исследованием разреженности газа, то можно воспользоваться моделью идеального газа. Будем считать, что все реагирующие компоненты являются идеальными газами, заполняющими общий объем и создающие давление p . В этом случае любым взаимодействием (кроме химических реакций) между компонентами смеси газов можно пренебречь. Это позволяет допустить, что химический потенциал i -го компонента зависит только от параметров этого же компонента.

(3.58)

Здесь - парциальное давление i -го компонента, причем:

С учетом (3.58) условие равновесия трехкомпонентной системы (3.57) примет вид:

(3.59)

Для дальнейшего анализа воспользуемся уравнением состояния идеального газа, которое запишем в виде:

(3.60)

Здесь через , как и ранее, обозначается термодинамическая температура . Тогда известная из школы запись принимает вид: , что и записано в (3.60).

Тогда для каждого компонента смеси получим:

(3.61)

Определим вид выражения химического потенциала идеального газа. Как следует из (2.22), химический потенциал имеет вид:

(3.62)

Учитывая уравнение (3.60), которое можно записать в виде , задача определения химического потенциала сводится к определению удельной энтропии и удельной внутренней энергии.

Система уравнений для удельной энтропии следует из термодинамических тождеств (3.8) и выражения теплоемкости (3.12):

Учитывая уравнение состояния (3.60) и переходя к удельным характеристикам, имеем:

(3.63)

Решение (3.63) имеет вид:

Система уравнений для удельной внутренней энергии идеального газа следует из (2.23):

Решение этой системы запишется в виде:

Подставляя (3.64) - (3.65) в (3.66) и учитывая уравнение состояния идеального газа, получаем:

(3.66)

Для смеси идеальных газов выражение (3.66) принимает вид:

Подставляя (3.67) в (3.59), получаем:

Выполняя преобразования, запишем:

Выполняя потенцирование в последнем выражении, имеем:

(3.68)

К-во Просмотров: 511
Бесплатно скачать Реферат: Термодинамические потенциалы