Реферат: Термодинамическое равновесие и устойчивость Фазовые переходы
следует:
(4.22)
Поскольку температура всегда принимает положительные значения из (4.22) следует:
(4.23)
Выражение (4.23) является искомым условием устойчивости термодинамической системы по отношению к нагреванию. Некоторые авторы рассматривают положительность теплоемкости как одно из проявлений принципа Ле-Шателье – Брауна. При сообщении термодинамической системе количества тепла :
,
Ее температура возникает, что, в соответствии со вторым началом термодинамики в формулировке Клаузиуса (1850г.), приводит к уменьшению количества теплоты, поступающего в систему. Иначе говоря, в ответ на внешние воздействия – сообщение количества теплоты – термодинамические параметры системы (температура ) меняются таким образом, что внешние воздействия ослабляются.
3.
Рассмотрим вначале однокомпонентную систему, находящуюся в двухфазном состоянии. Здесь и далее под фазой будем понимать однородное вещество в химическом и физическом отношении.
Таким образом, каждую фазу будем рассматривать как однородную и термодинамически устойчивую подсистему, характеризуемую общим значением давления (в соответствии с требованием отсутствия тепловых потоков). Исследуем условие равновесия двуфазной системы по отношению к изменению числа частиц и , находящихся в каждой из фаз.
С учетом сделанных допущений наиболее удобным является использование описания системы под поршнем с фиксацией параметров (). Здесь - общее число частиц в обеих фазах. Также для простоты “выключим” внешние поля (а =0).
В соответствии с выбранным способом описания условием равновесия является условие (4.10) минимума потенциала Гиббса:
(4.24а)
которое дополняется условием постоянства числа частиц N :
(4.24б)
Выполняя варьирование в (4.24а) с учетом (4.24б) находим:
(4.25)
Таким образом, общим критерием равновесия двуфазной системы является равенство их химических потенциалов.
Еси известны выражения химических потенциалов и , то решением уравнения (4.25) будет некоторая кривая
,
называемая кривой фазового равновесия или дискретной фазового равновесия.
Зная выражения для химических потенциалов, из равенства (2.юю):
мы можем найти удельные объемы для каждой из фаз:
(4.26)
То есть, (4.26) можно переписать в виде уравнений состояния для каждой из фаз:
(4.27)