Реферат: тичної статистики теоретичного аналізу теорії імовірності системного аналізу економетрії
Fp =dx 2 /S2 =5.445,
n
де dx 2 = Σ(x 1 -x)2 /(n-1).Оскільки Fрозр >Fтабл =1,95,то прийнята
i=1
модель адекватна експерементальним даним.
Для оцінки меж надійних інтервалів лінії регресії спочатку визначимо надійні інтервали здобутої лінійної моделі,
Dx1i =ta,k S/n1/2 (1+(x1i -x1 )2 /dx1 2 )1/2
а потімвиконаємо зворотній перехід за формулами :
Yi ±DYi =exp(Y1i ±DY1i ).
Складемо таблицю1.
Визначимо автокореляцію за формулою:
n n
d= Σ(lt -lt-1 )2 /Σlt 2 =2.425.
t=2 t=1
Визначимо границі d-статистики: d1 =1.16,dn =1.39.Оскільки виконується нерівність dn <d<4-dn ,то враховується гіпотеза про відсутність атокореляції.
Для оцінки меж надійних інтервалів прогнозу спочатку визначимо надійні інтервали здобутої лінійної моделі,
DX1p =ta,k S/n1/2 (1+n+(X1i -X1 )2 /dx1 2 )
а потім виконаємо зворотній перехід за формулами:
Yp ±DYp =exp(Y1p ±DY1p )
Складемо таблицю 2.
Таблиця 1.
t | x(t) | t1 | x1 (t) | x1r | xr | Dx1 | xmin | xvf[ |
1 | 9,51 | 0 | 2,2523 | 2,2002 | 9,0268 | 2,6461 | 0,6402 | 127,267 |
2 | 11,62 | 0,6931 | 2,4527 | 2,4137 | 11,1757 | 1,8811 | 1,7034 | 73,3196 |
3 | 11,22 | 1,0986 | 2,4177 | 2,5338 | 12,6626 | 1,4754 | 2,8958 | 55,371 |
4 | 15,22 | 1,3863 | 2,7226 | 2,6273 | 13,8362 | 1,228 | 4,0522 | 47,2427 |
5 | 13,99 | 1,6094 | 2,6383 | 2,696 | 14,8202 | 1,0767 | 5,0498 | 43,4978 |
6 | 15,18 | 1,7918 | 2,72 | 2,7522 | 15,6771 | 0,9922 | 5,8123 | 42,2844 |
7 | 14,98 | 1,9459 | 2,7067 | 2,7997 | 16,4396 | 0,9561 | 6,3193 | 42,7674 |
8 | 17,88 | 2,0794 | 2,8837 | 2,8408 | 17,13 | 0,9541 | 6,5974 | 44,4772 |
9 | 16,78 | 2,1972 | 2,8202 | 2,8771 | 17,763 | 0,9753 | 6,6978 | 47,1082 |
10 | 18,94 | 2,3026 | 2,9413 | 2,9096 | 18,349 | 1,0114 | 6,6738 | 50,4487 |
11 | 20,98 | 2,3979 | 3,0436 | 2,9389 | 18,8958 | 1,0568 | 6,5695 | 54,3499 |
12 | 15,71 | 2,4849 | 2,7543 | 2,9657 | 19,4092 | 1,1068 | 6,4169 | 58,7071 |
13 | 20,74 | 2,5649 | 3,0321 | 2,9904 | 19,8937 | 1,1598 | 6,2377 | 63,446 |
14 | 24,7 | 2,6391 | 3,2068 | 3.0132 | 20,3532 | 1,2138 | 6,0463 | 68,5134 |
15 | 20,78 | 2,7081 | 3,034 | 3,0345 | 20,7904 | 1,2678 | 5,8514 | 73,8702 |
16 | 20,74 | 2,7726 | 3,0321 | 3,0544 | 21,2079 | 1,3212 | 5,6585 | 79,4872 |
17 | 19,75 | 2,8332 | 2,9832 | 3,0731 | 21,6077 | 1,3736 | 5,4709 | 85,342 |
Таблиця 2.
t | xlp (t) | xp (t) | Dxlp | xpmin | xpmax |
19 | 3.1073 | 22.3610 | 7.1463 | 0.0176 | 28385.4 |
20 | 3.1231 | 22.7172 | 7.1565 | 0.0177 | 29131.4 |
21 | 3.1382 | 23.0612 | 7.1666 | 0.0178 | 29874.0 |
Відповідь.
З надійністю р=0,1 можна вважати, що експерементальним даним відповідає така математична модель:Yr=9.0268X0.3081 .
Для tp =19 точкова оцінка прогнозу показника має значення Xp =22,36.З надійністю p=0,1прогноз показника буде набувати значення в інтервалі (0,0176;2838,4).
Для tp =20 точкова оцінка прогнозу показника має значення Xp =22,72.З надійністю p=0,1прогноз показника буде набувати значення в інтервалі (0,0177;29131,4).
Для tp =21 точкова оцінка прогнозу показника має значення Xp =22,36.З надійністю p=0,1 прогноз показника буде набувати значення в інтервалі (0,0178;29874,0).
Завдання 3.
Визначити параметри лінійної моделі залежності витрат на споживання С від рівня доходів D,збережень S та заробітної плати L.Оцінить коефіцієнти детермінації,автокореляції та перевірте показники на мультиколінеарність між факторами.Обчислення виконати на базі 13 статистичних даних певного регіону (C,D,S,L подані у тис $).
Дано:
І | С(і) | D(i) | S(i) | L(i) |
1 | 9,08 | 10,11 | 12,29 | 9 |
2 | 10,92 | 12,72 | 11,51 | 8,03 |
3 | 12,42 | 11,78 | 11,46 | 9,66 |
4 | 10,9 | 14,87 | 11,55 | 11,34 |
5 | 11,52 | 15,32 | 14 | 10,99 |
6 | 14,88 | 16,63 | 11,77 | 13,23 |
7 | 15,2 | 16,39 | 13,71 | 14,02 |
8 | 14,08 | 17,93 | 13,4 | 12,78 |
9 | 14,48 | 19,6 | 14,01 | 14,14 |
10 | 14,7 | 18,64 | 1625 | 14,67 |
11 | 18,34 | 18,92 | 16,72 | 15,36 |
12 | 17,22 | 21,22 | 14,4 | 15,69 |
13 | 19,42 | 21,84 | 18,19 | 17,5 |