Реферат: Туннелирование в микроэлектронике

введя обозначение:

, (1.4)

окончательно получим:

(1.5).

Аналогично для области II:

, (1.6)

где . Таким образом, мы получили характеристические уравнения, общие решения которых имеют вид:

при x<0, (1.7)

при x>0 (1.8)

Слагаемое соответствует волне, распространяющейся в области I в направлении оси х, А1 - амплитуда этой волны. Слагаемое соответствует волне, распространяющейся в области I в направлении, противоположном х. Это волна, отражённая от барьера, В1 - амплитуда этой волны. Так как вероятность нахождения микрочастицы в том или ином месте пространства пропорциональна квадрату амплитуды волны де Бройля, то отношение представляет собой коэффициент отражения микрочастицы от барьера.

Слагаемое соответствует волне, распространяющейся в области II в направлении х. Квадрат амплитуды этой волны отражает вероятность проникновения микрочастицы в область II. Отношение представляет собой коэффициент прозрачности барьера.

Слагаемое должно соответствовать отражённой волне, распространяющейся в области II. Так как такой волны нет, то В2 следует положить равным нулю.

Для барьера, высота которого U>E, волновой вектор k2 является мнимым. Положим его равным ik, где является действительным числом. Тогда волновые функции и приобретут следующий вид:

(1.9)

(1.10)

Так как , то это значит, что имеется вероятность проникновения микрочастицы на некоторую глубину во вторую область. Эта вероятность пропорциональна квадрату модуля волновой функции :

. (1.11)

Наличие этой вероятности делает возможным прохождение микрочастиц сквозь потенциальный барьер конечной толщины l (рис. 1.1). Такое просачивание получило название туннельного эффекта. По формуле (1.11) коэффициент прозрачности такого барьера будет равен:

, (1.12)

где D0 – коэффициент пропорциональности, зависящий от формы барьера. Особенностью туннельного эффекта является то, что при туннельном просачивании сквозь потенциальный барьер энергия микрочастиц не меняется: они покидают барьер с той же энергией, с какой в него входят.

Туннельный эффект играет большую роль в электронных приборах. Он обуславливает протекание таких явлений, как эмиссия электронов под действием сильного поля, прохождение тока через диэлектрические плёнки, пробой p-n перехода; на его основе созданы туннельные диоды, разрабатываются активные плёночные элементы.

2.1 КОНТАКТ МЕТАЛЛ-МЕТАЛЛ

Рассмотрим плотный контакт двух металлов М1 и М2 с разными работами выхода А1 и А2 (рис. 2.1.1).

A1 A2


EF1 n21


n12 EF2

d


M1 M2

Рис. 2.1.1 Энергетическая диаграмма контакта двух металлов в начальный момент времени

Вследствие того, что уровень Ферми EF 1 в М1 (уровень Ферми это то значение энергии уровня, выше которого значения энергии электрон принимать не может при Т=0 К) находится выше, чем EF 2 в М2 , соответствующие работы выхода А12 . Если Т0 К, то при контакте металлов между ними начнётся обмен электронами за счёт термоэлектронной эмиссии. При Т=0 К электроны за счёт туннелирования будут переходить из М1 в М2, так как напротив заполненных уровней в М1 будут находиться свободные уровни в М2 .

К-во Просмотров: 404
Бесплатно скачать Реферат: Туннелирование в микроэлектронике