Реферат: Управление ресурсами предприятия
Поскольку значение целевой функции оказалось меньшим, чем в точке , то абсцисса следующего значения определяется по формуле
Соответствующее значение целевой функции равно
Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на первом этапе
Цикл №2.
Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервале у.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0 =F1 =1, F2 =2, F3 =3, F4 =3+2=5, F5 =5+3=8, F6 =8+5=13, F7 =13+8=21. Отсюда определяем n = 7. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn =21, Fn-1 =13, Fn-2 =8, Fn-3 =5, Fn-4 =3, Fn-5 =2, Fn-6 =1.
Вычислим значение целевой функции в точках
Поскольку целевая функция имеет большее значение в точке , то это значение функции запоминается, а следующее приближение значения определяется по формуле
Сравнивая и запоминаем большее значение, а следующее значение целевой функции вычисляем в точке
Сравнивая значения целевой функции в точках и устанавливаем, что значение в точке оказывается лидирующим. Поэтому в следующем шаге приближение к вычисляется по формуле
Сравнение значений целевой функции в точках и оказывается в пользу приближения . Поэтому в очередном шаге абсцисса следующего значения определяется по формуле
Вычисляя значение целевой функции в точке , получим
Поскольку значение целевой функции оказалось меньшим, чем в точке , то абсцисса следующего значения определяется по формуле
Соответствующее значение целевой функции равно
Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на третьем этапе
Цикл №3.
Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервале у.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0 =F1 =1, F2 =2, F3 =3, F4 =3+2=5, F5 =5+3=8, F6 =8+5=13, F7 =13+8=21. Отсюда определяем n = 7. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn =21, Fn-1 =13, Fn-2 =8, Fn-3 =5, Fn-4 =3, Fn-5 =2, Fn-6 =1.
Вычислим значение целевой функции в точках
Поскольку целевая функция имеет большее значение в точке , то это значение функции запоминается, а следующее приближение значения определяется по формуле
Сравнивая и запоминаем большее значение, а следующее значение целевой функции вычисляем в точке
Сравнивая значения целевой функции в точках и устанавливаем, что значение в точке оказывается лидирующим. Поэтому в следующем шаге приближение к вычисляется по формуле
Сравнение значений целевой функции в точках и оказывается в пользу приближения . Поэтому в очередном шаге абсцисса следующего значения определяется по формуле
Вычисляя значение целевой функции в точке , получим
Поскольку значение целевой функции оказалось меньшим, чем в точке , то абсцисса следующего значения определяется по формуле
Соответствующее значение целевой функции равно
Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на первом этапе
Прирост прибыли составляет у.е.с.
Расчёт для второго сегмента рынка.
Цикл №1
Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервале у.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0 =F1 =1, F2 =2, F3 =3, F4 =3+2=5, F5 =5+3=8, F6 =8+5=13, F7 =13+8=21, F8 =34. Отсюда определяем n = 8. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn =34, Fn-1 =21, Fn-2 =13, Fn-3 =8, Fn-4 =5, Fn-5 =3, Fn-6 =2, Fn-7 =1. Вычислим значение целевой функции в точках
Поскольку целевая функция имеет большее значение в точке , то это значение функции запоминается, а следующее приближение значения определяется по формуле
Сравнивая и запоминаем большее значение, а следующее значение целевой функции вычисляем в точке
Сравнивая значения целевой функции в точках и устанавливаем, что значение в точке снова оказывается лидирующим. Поэтому в следующем шаге приближение к вычисляется по формуле
Сравнение значений целевой функции в точках и оказывается в пользу приближения . Поэтому в очередном шаге абсцисса следующего значения определяется по формуле