Реферат: Управление ресурсами предприятия

Поскольку значение целевой функции оказалось меньшим, чем в точке , то абсцисса следующего значения определяется по формуле

Соответствующее значение целевой функции равно

Поскольку значение целевой функции оказалось меньшим, чем в точке , то абсцисса следующего значения определяется по формуле

Соответствующее значение целевой функции равно

Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на первом этапе

Цикл №2.

Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервале у.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0 =F1 =1, F2 =2, F3 =3, F4 =3+2=5, F5 =5+3=8, F6 =8+5=13, F7 =13+8=21, F8 =21+13=34, F9 =34+21=55. Отсюда определяем n = 9. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn =55, Fn-1 =34, Fn-2 =21, Fn-3 =13, Fn-4 =8, Fn-5 =5, Fn-6 =3, Fn-7 =2, Fn-8 =1.

Вычислим значение целевой функции в точках

Поскольку целевая функция имеет большее значение в точке , то это значение функции запоминается, а следующее приближение значения определяется по формуле

Сравнивая и запоминаем большее значение, а следующее значение целевой функции вычисляем в точке

Сравнивая значения целевой функции в точках и устанавливаем, что значение в точке снова оказывается лидирующим. Поэтому в следующем шаге приближение к вычисляется по формуле

Сравнение значений целевой функции в точках и оказывается в пользу приближения . Поэтому в очередном шаге абсцисса следующего значения определяется по формуле

Вычисляя значение целевой функции в точке , получим

Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на втором этапе

Цикл №3.

Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервале у.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0 =F1 =1, F2 =2, F3 =3, F4 =3+2=5, F5 =5+3=8, F6 =8+5=13, F7 =13+8=21, F8 =21+13=34, F9 =34+21=55, F10 =55+34=89, F11 =144. Отсюда определяем n = 11. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn =144, Fn-1 =89, Fn-2 =55, Fn-3 =34, Fn-4 =21, Fn-5 =13, Fn-6 =8, Fn-7 =5, Fn-8 =3, Fn-9 =2, Fn-10 =1.

Вычислим значение целевой функции в точках

Поскольку целевая функция имеет большее значение в точке , то это значение функции запоминается, а следующее приближение значения определяется по формуле

Сравнивая и запоминаем большее значение, а следующее значение целевой функции вычисляем в точке

Сравнивая значения целевой функции в точках и устанавливаем, что значение в точке оказывается лидирующим. Поэтому в следующем шаге приближение к вычисляется по формуле

Сравнение значений целевой функции в точках и оказывается в пользу приближения . Поэтому в очередном шаге абсцисса следующего значения определяется по формуле

Вычисляя значение целевой функции в точке , получим

Поскольку значение целевой функции оказалось меньшим, чем в точке , то абсцисса следующего значения определяется по формуле

К-во Просмотров: 370
Бесплатно скачать Реферат: Управление ресурсами предприятия