Реферат: Уравнение Кортевега - де Фриса, солитон, уединенная волна

Возвращаясь к волнам на воде, заметим, что их можно анализировать используя хорошо известные уравнения гидродинамики, о которых известно, что они нелинейны. Поэтому и волны на воде в общем случае являются нелинейными. Только в предель­ном случае малых амплитуд эти волны могут счи­таться линейными.

Отметим, что и распространение звука не во всех случаях описывается линейным уравнением. Еще Рассел при обосновании своих наблюдений по уе­диненной волне отметил, что звук от выстрела пуш­ки распространяется в воздухе быстрее, чем коман­да произвести этот выстрел. Это объясняется тем, что распространение мощного звука описывается уже не волновым уравнением, а уравнениями газо­вой динамики.

2. Уравнение Кортевега - де Фриса

Окончательная ясность в проблеме, которая воз­никла после опытов Рассела по уединенной волне, наступила после работы датских ученых Д .Д. Кортевега и Г. де Фриса, которые попытались разобраться в существе наблюдений Рассела. Обобщив метод Рэлея, эти ученые в 1895 году вывели уравнение для описания длинных волн на воде. Кортевег и де Фрис, используя уравнения гидродинамики, рас­смотрели отклонение и(х, t ) от положения равнове­сия поверхности воды при отсутствии вихрей и при постоянстве плотности воды. Сделанные ими на­чальные приближения были естественны. Они так­же предположили, что при распространении волны выполняются два условия для безразмерных пара­метров

e = <<1, d = (2.1)

Здесь а — амплитуда волны, h глубина бассейна, в котором рассматриваются волны, l — длина волны (рис. 1).

Суть приближений состояла в том, что амплиту­да рассматриваемых волн была много меньше, чем

Рис. 1. Уединенная волна, распространяющаяся по каналу, и ее параметры

глубина бассейна, но в то же время длина волны бы­ла много больше, чем глубина бассейна. Таким образом, Кортевег и де Фрис рассматривали длин­ные волны.

Уравнение, которое было ими получено, имеет вид

ut + 6uux + uxxx = 0. (2.2)

Здесь u (x,t) - отклонение от положения равновесия поверхности воды (форма волны) - зависит от ко­ординаты x и времени t . Индексы у характеристики u означают соответствующие производные по t и по x . Это уравнение, как и (1), является уравнением в ча­стных производных. Изучаемая характеристика у него (в данном случае u ) зависит от пространствен­ной координаты x и времени t .

Решить уравнение такого типа - значит найти зависимость u от x и t, после подстановки которой в уравнение мы придем к тождеству.

Уравнение (2.2) имеет волновое решение, извест­ное с конца прошлого века. Оно выражается через специальную эллиптическую функцию, изученную Карлом Якоби, которая носит теперь его имя.

При некоторых условиях эллиптическая функ­ция Якоби переходит в гиперболический секанс и решение имеет вид

u(x,t)=2k2 ch-2 {k(x-4k2 t)+ j 0 } , (2.3)

где j 0 — произвольная постоянная.

Решение (8) уравнения (7) является предельным случаем бесконечно большого периода волны. Именно этот предельный случай является уединен­ной волной, соответствующей наблюдению Рассела в 1834 году.

Решение (8) уравнения Кортевега— де Фриса яв­ляется бегущей волной. Это означает, что оно зави­сит от координаты x и времени t через переменную x = x - c 0 t .Эта переменная характеризует положение точки координат, движущейся со скоростью волны с0 , то есть она обозначает положение наблюдателя, который постоянно находится на гребне волны. Та­ким образом, уравнение Кортевега— де Фриса в от­личие от решения Д'Аламбера (1.2) волнового реше­ния (1.1) имеет волну, распространяющуюся лишь в одном направлении. Однако оно учитывает прояв­ление более сложных эффектов вследствие дополнительных слагаемых uux и uxxx .

В действительности это уравнение является так­же приближенным, поскольку при его выводе ис­пользованы малые параметры (2.1) e и d . Если прене­бречь влиянием этих параметров, устремляя их к нулю, мы получим одну из частей решения Д'Алам­бера.

Конечно, при выводе уравнения для длинных волн на воде влияние параметров е и 6 может быть учтено более точно, но тогда получится уравнение, содержащее гораздо больше слагаемых, чем уравне­ние (2.2), и с производными более высокого порядка. Из сказанного следует, что решение уравнения Кортевега-де Фриса для описания волн справедливо только на определенном расстоянии от места обра­зования волны и на определенном промежутке вре­мени. На очень больших расстояниях нелинейные волны уже не будут описываться уравнением Кортевега-де Фриса, и для описания процесса потребует­ся более точная модель. Уравнение Кортевега-де Фриса в этом смысле следует рассматривать как не­которое приближение (математическую модель), со­ответствующее с определенной степенью точности реальному процессу распространения волн на воде.

Используя специальный подход, можно убе­диться, что принцип суперпозиции решений для уравнения Кортевега-де Фриса не выполняется, и поэтому это уравнение является нелинейным и описывает нелинейные волны.

2.1. Солитоны Кортевега - де Фриса

В настоящее время кажется странным, что от­крытие Рассела и его последующее подтверждение в работе Кортевега и де Фриса не получили замет­ного резонанса в науке. Эти работы оказались за­бытыми почти на 70 лет. Один из авторов уравне­ния, Д.Д. Кортевег, прожил долгую жизнь и был известным ученым. Но когда в 1945 году научная общественность отмечала его 100-летний юбилей, то в списке лучших публикаций работа, выполнен­ная им с де Фрисом, даже не значилась. Составите­ли списка сочли эту работу Кортевега не заслужива­ющей внимания. Только спустя еще четверть века именно эта работа стала считаться главным науч­ным достижением Кортевега.

Однако если поразмыслить, то такое невнима­ние к уединенной волне Рассела становится понят­ным. Дело в том, что в силу своей специфичности это открытие долгое время считалось довольно част­ным фактом. В самом деле, в то время физический мир казался линейным и принцип суперпозиции считался одним из фундаментальных принципов большинства физических теорий. Поэтому никто из исследователей не придал открытию экзотичес­кой волны на воде серьезного значения.

Возвращение к открытию уединенной волны на воде произошло в какой-то степени случайно и вна­чале, казалось, не имело к нему никакого отноше­ния. Виновником этого события стал величайший физик нашего столетия Энрико Ферми. В 1952 году Ферми попросил двух молодых физиков С. Улама и Д. Паста решить одну из нелинейных задач на ЭВМ. Они должны были рассчитать колебания 64 гру­зиков, связанных друг с другом пружинками, ко­торые при отклонении от положения равновесия на D l приобретали возвращающуюся силу, равную k D l +a (D l )2 . Здесь k и a - постоянные коэффициен­ты. При этом нелинейная добавка предполагалась малой по сравнению с основной силой k D l . Созда­вая начальное колебание, исследователи хотели по­смотреть, как эта начальная мода будет распреде­ляться по всем другим модам. После проведения расчетов этой задачи на ЭВМ ожидаемого результа­та они не получили, но обнаружили, что перекачи­вание энергии в две или три моды на начальном этапе расчета действительно происходит, но затем наблюдается возврат к начальному состоянию. Об этом парадоксе, связанном с возвратом начального колебания, стало известно нескольким математи­кам и физикам. В частности, об этой задаче узнали американские физики М. Крускал и Н. Забуски, ко­торые решили продолжить вычислительные экспе­рименты с моделью, предложенной Ферми.

После расчетов и поиска аналогий эти ученые установили, что уравнение, которое использовали Ферми, Паста и Улам, при уменьшении расстояния между грузиками и при неограниченном росте их числа переходит в уравнение Кортевега—де Фриса. То есть по существу задача, предложенная Ферми, сводилась к численному решению уравнения Кор­тевега—де Фриса, предложенного в 1895 году для описания уединенной волны Рассела. Примерно в те же годы было показано, что для описания ионно-звуковых волн в плазме используется также уравне­ние Кортевега—де Фриса. Тогда стало ясно, что это уравнение встречается во многих областях физики и, следовательно, уединенная волна, которая опи­сывается этим уравнением, является широко рас­пространенным явлением.

Продолжая вычислительные эксперименты по моделированию распространения таких волн, Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега—де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для уединенных волн (8) следует, что скорость движения таких волн тем выше, чем боль­ше их амплитуда, а ширина пика уменьшается с ростом амплитуды. Таким образом, высокие уеди­ненные волны движутся быстрее. Волна с большей амплитудой догонит движущуюся впереди волну с меньшей амплитудой. Далее в течение некоторого времени две волны будут двигаться вместе как еди­ное целое, взаимодействуя между собой, а затем они разъединятся. Замечательным свойством этих-волн является то, что после своего взаимодействия форма и

Рис. 2. Два солитона, описываемые уравнением Кортевега-де Фриса,

до взаимодействия (вверху) и после (внизу)

скорость этих волн восстанавливаются. Обе волны после столкновения лишь смещаются на не­которое расстояние по сравнению с тем, как если бы они двигались без взаимодействия.

Процесс, у которого после взаимодействия волн сохраняются форма и скорость, напоминает упру­гое столкновение двух частиц. Поэтому Крускал и Забуски такие уединенные волны назвали солитонами (от англ. solitary- уединенный). Это специ­альное название уединенных волн, созвучное элек­трону, протону и многим другим элементарным частицам, в настоящее время общепринято.

Уединенные волны, которые были открыты Рас­селом, и в самом деле ведут себя как частицы. Боль­шая волна не проходит через малую при их взаимо­действии. Когда уединенные волны соприкасаются, то большая волна замедляется и уменьшается, а волна, которая была малой, наоборот, ускоряется и подрастает. И когда малая волна дорастает до разме­ров большой, а большая уменьшается до размеров малой, солитоны разделяются и больший уходит вперед. Таким образом, солитоны ведут себя как уп­ругие теннисные мячи.

К-во Просмотров: 265
Бесплатно скачать Реферат: Уравнение Кортевега - де Фриса, солитон, уединенная волна