Реферат: Узагальнена функція Гріна

Розв’яжемо вироджену крайову задачу за допомогою методу варіації довільних сталих, вважаючи, що умова ортогональності (4) справджується. Виберемо лінійно незалежний з розв’язок однорідного рівняння (1) так, щоб виконувалася рівність

Цим ми дещо спростимо формули, які буде одержано нижче. Шукаємо розв’язок (3) методом варіації сталих у вигляді

(6)

отримаємо таку систему:

Розв’яжемо її відносно та за правилом Крамера.

Маємо рівняння

, (7)

При цьому

Тому, аби розв’язок задовольняв крайову умову в точці ,необхідно вимагати виконання рівності . Звідси і з урахуванням (4) . Остання рівність забезпечить справдження крайової умови в правому кінці проміжку .

Загальний розв’язок першого з рівнянь (7) візьмемо у вигляді , де - довільна стала. Підставивши знайдені функції , в (6), дістанемо одно параметричну сім’ю функцій

, (8)

Кожна з яких є розв’язком крайової задачі (3),(2). Умову ортогональності (5) завжди можна задовольнити, відповідним чином обравши довільнусталу с1 .

Підсумком наведених міркувань є така теорема:

Теорема1

Розв’язок крайової задачі (3) (2) існує тоді і лише тоді, коли функція ортогональна до кожного розв'язку відповідної однорідної крайової задачі.

Тепер покажемо, що розв’язок(8) можна подати у вигляді інтегрального перетворення

,

Де функція задовольняє крайові умови й при кожному

є ортогональною до .

Насамперед, запровадивши функцію

за аналогією з не виродженим випадком, перепишемо (8) у вигляді

(9)

Оскільки ,,

, ,

То задовольняє умову лише в лівому кінці проміжку , адже розв’язок не задовольняє жодної умови (2). Отже, функцію доведеться відповідним чином виправити. Для цього звернемо увагу на такий факт:якщо у формулі(9) зробити заміну -, де довільні функції, то вона й надалі визначатиме розв’язок рівняння (3):адже ортогональна до . Неважко зрозуміти, що перетворена функція задовольнятиме обидві крайові умови, якщо функцію вибрати так, щоб при деякому виконувалися рівності

К-во Просмотров: 215
Бесплатно скачать Реферат: Узагальнена функція Гріна