Реферат: Вакансионное Распухание
Основу теоретических моделей распухания составляют кинетические уравнения концентрации точечных дефектов среды, содержащей стоки. При этом предполагается, что концентрация радиационных точечных дефектов при характерных температурах распухания (0,2-0,6) Тпл превосходит концентрацию термически равновесных дефектов. Вакансии и межузельные атомы, мигрируя по решетке, могут: во-первых, рекомбинировать; во-вторых, образовывать скопления одноименных дефектов и, в-третьих, уходить на стоки, в качестве которых служат сетка дислокаций, дислокационные петли, поры и другие протяженные дефекты. Следовательно, скорость изменения концентрации межузельных атомов и вакансий равна разности скоростей их образования и гибели, что может быть описано кинетическими уравнениями
(1)-(2)
где Сv., С i - усредненные концентрации вакансий и межузельных атомов;
к -скорость образования пар Френкеля; W - атомный объем; Ns -число стоков типа S в единице объема; I sv и Isi -число вакансий и межузельных атомов, приходящих в единицу времени на сток типа S ; ap -коэффициент взаимной рекомбинации точечных дефектов. Для нахождения входящих в (1), (2) величин I sv , I si решается диффузионная задача миграции точечных дефектов в упругом поле, создаваемом стоком типа S , а для этого необходимо знать энергию взаимодействия точечных дефектов со стоками. Считается, что точечные дефекты в первом приближении с порами не взаимодействуют. С дислокациями они взаимодействуют по нескольким механизмам, наиболее важными из которых являются размерное взаимодействие и модульный эффект.
2. Поток точечных дефектов на дислокацию
Размерное взаимодействие, как известно, дает наибольший вклад в полную энергию взаимодействия между дислокацией и точечным дефектом. Оно имеет упругую природу и фактически является взаимодействием дальнодействующего поля напряжения дислокации с полем атомных смещений вокруг точечного дефекта. Для краевой прямолинейной дислокации, направленной вдоль оси z :
(3)
где r - расстояние дефекта от дислокации; DVa - релаксационный объем, разница между объемом дефекта и атомным объемом; n - коэффициент Пуассона.
Если все дислокации параллельны друг другу и плотность их r ¶ , то область влияния каждой из них ограничена цилиндрической поверхностью радиуса
(4)
Концентрация радиационных точечных дефектов в пространстве между дислокациями (стоками) будет отличаться от таковой на границах стоков. Соответствующий градиент концентрации С a вызовет поток точечных дефектов
(5)
где D a , C a коэффициент диффузии и атомная концентрация точечных дефектов соответственно. Так как диффундирующие частицы взаимодействуют со своими стоками, в (5) необходимо добавить член, учитывающий действие дополнительной силы (3), Эта сила приводит к направленному потоку точечных дефектов (дрейфовому потоку) даже в отсутствие градиента концентрации. Таким образом, уравнение диффузии примет вид
(6)
где индекс a означает или межузельные атомы i , или вакансии v . В установившемся режиме, характеризуемом стационарными потоками точечных дефектов, дивергенция потока div J a =0 и уравнение (6) перепишется:
(7)
Здесь учтено, что Евз . является гармонической функцией, т.е. справедливо соотношение Ñ 2 E a вз =0.
Для решения (7) зададимся граничными условиями. Считаем дислокацию идеальным стоком для точечных дефектов, а потому у ядра дислокации (r = r0 ) поддерживается концентрация
(8)
где C ¶ a -термически равновесная концентрация точечных дефектов.
Другое граничное условие получим, считая, что среднее расстояние между дислокациями достаточно велико, поэтому влиянием поля дислокации на расстояние R ¶ от ядра дислокации можно пренебречь (E a вз =0 ). Тогда
--> ЧИТАТЬ ПОЛНОСТЬЮ <--