Реферат: Вакансионное Распухание

Основу теоретических моделей распухания составляют кинетические уравнения концентрации точечных дефектов среды, содержащей стоки. При этом предполагается, что концентрация радиационных точечных дефектов при характерных температурах распухания (0,2-0,6) Тпл превосходит концентрацию термически равновесных дефектов. Вакансии и межузельные атомы, мигрируя по решетке, могут: во-первых, рекомбинировать; во-вторых, образовывать скопления одноименных дефектов и, в-третьих, уходить на стоки, в качестве которых служат сетка дислокаций, дислокационные петли, поры и другие протяженные дефекты. Следовательно, скорость изменения концентрации межузельных атомов и вакансий равна разности скоростей их образования и гибели, что может быть описано кинетическими уравнениями

(1)-(2)

где Сv., С i - усредненные концентрации вакансий и межузельных атомов;

к -скорость образования пар Френкеля; W - атомный объем; Ns -число стоков типа S в единице объема; I sv и Isi -число вакансий и межузель­ных атомов, приходящих в единицу времени на сток типа S ; ap -коэффици­ент взаимной рекомбинации точечных дефектов. Для нахождения входящих в (1), (2) величин I sv , I si решается диффузионная задача миграции точечных дефектов в упругом поле, создаваемом стоком типа S , а для этого необходимо знать энергию взаимодействия точечных дефектов со стоками. Считается, что точечные дефекты в первом приближении с порами не взаимо­действуют. С дислокациями они взаимодействуют по нескольким механиз­мам, наиболее важными из которых являются размерное взаимодействие и модульный эффект.

2. Поток точечных дефектов на дислокацию

Размерное взаимодействие, как известно, дает наибольший вклад в полную энергию взаимодействия между дислокацией и точечным дефектом. Оно имеет упругую природу и фактически является взаимодействием дальнодействующего поля напряжения дислокации с полем атомных смещений вокруг точечного дефекта. Для краевой прямолинейной дислокации, направ­ленной вдоль оси z :

(3)

где r - расстояние дефекта от дислокации; DVa - релаксационный объем, разница между объемом дефекта и атомным объемом; n - коэффициент Пуассона.

Если все дислокации параллельны друг другу и плотность их r , то область влияния каждой из них ограничена цилиндрической поверхно­стью радиуса

(4)

Концентрация радиационных точечных дефектов в пространстве между дис­локациями (стоками) будет отличаться от таковой на границах стоков. Соот­ветствующий градиент концентрации С a вызовет поток точечных дефектов

(5)

где D a , C a коэффициент диффузии и атомная концентрация точечных дефек­тов соответственно. Так как диффундирующие частицы взаимодействуют со своими стоками, в (5) необходимо добавить член, учитывающий действие дополнительной силы (3), Эта сила приводит к направленному потоку то­чечных дефектов (дрейфовому потоку) даже в отсутствие градиента концен­трации. Таким образом, уравнение диффузии примет вид

(6)

где индекс a означает или межузельные атомы i , или вакансии v . В уста­новившемся режиме, характеризуемом стационарными потоками точечных дефектов, дивергенция потока div J a =0 и уравнение (6) перепишется:

(7)

Здесь учтено, что Евз . является гармонической функцией, т.е. справедливо соотношение Ñ 2 E a вз =0.

Для решения (7) зададимся граничными условиями. Считаем дисло­кацию идеальным стоком для точечных дефектов, а потому у ядра дислока­ции (r = r0 ) поддерживается концентрация

(8)

где C a -термически равновесная концентрация точечных дефектов.

Другое граничное условие получим, считая, что среднее расстояние между дислокациями достаточно велико, поэтому влиянием поля дислокации на расстояние R от ядра дислокации можно пренебречь (E a вз =0 ). Тогда

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 379
Бесплатно скачать Реферат: Вакансионное Распухание