Реферат: Вакансионное Распухание
где Собл a — средняя концентрация точечных дефектов, создаваемых облучением. Решение уравнения (7) с граничными условиями (8) и (9) имеет вид
(10)-(11)-(12)
Число точечных дефектов, достигающих единицы длины дислокации за единицу времени
(13)
Величину J a ( r 0 , q ) получим из уравнения (6), подставив в него (8) и (3). Интегрирование по q в (13) дает:
(14)
где Z a - параметр эффективности поглощения дислокацией точечного дефекта a:
(15)
Для плотности дислокаций ~1014 м-2 , характерной для облучаемых материалов, расстояние R d ~ 100 В, L a ~10 b < Rd , но L a > r 0 . С учетом данных неравенств и разложения функций K 0 и J 0 , при малых и больших аргументах выражение (15) упрощается:
(16)
Видно, что Z a зависит от типа дефекта через D V a .
Расчеты показывают, что и D Vi >| D Vi | .Тогда Li > Lv и, следовательно, Zi > Zv . Согласно (14) это приводит к тому, что дислокации поглощают преимущественно межузельные атомы, по сравнению с вакансиями. В качестве меры такого предпочтения (преференса) вводится величина
(17)
3. Поток точечных дефектов на пору
Поток рассчитывается таким же способом, как и на дислокацию. В простейшем случае, если объем облучаемого образца равномерно заполнен порами среднего радиуса rh и плотностью r h , на каждую пору приходится часть объема образца:
4/3 p R 3 h = r -1 h
(18)
Предполагается, что в сферической области радиусаRh других стоков , кроме поры, нет, и поэтому все точечные радиационные дефекты поглощаются порой.
Уравнение диффузии (7) для случая поры выглядит проще, чем для дислокации, так как не содержит дрейфового члена
(19)
Граничные условия можно записать: