Реферат: Вклад Л.Эйлера в развитие математического анализа

План

Введение

1 Понятие математического анализа. Исторический очерк

2 Вклад Л.Эйлера в развитие математического анализа

3 Дальнейшее развитие математического анализа

Заключение

Список литературы


Введение

Л. Эйлер - самый продуктивный математик в истории, автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др. Многие его работы оказали значительное влияние на развитие науки.

Почти полжизни Эйлер провёл в России, где энергично помогал создавать российскую науку. В 1726 году он был приглашён работать в Санкт-Петербург. В 1731—1741 и начиная с 1766 года был академиком Петербургской Академии Наук (в 1741-1766 годах работал в Берлине, оставаясь почётным членом Петербургской Академии). Хорошо знал русский язык, часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики по математике (С. К. Котельников), и по астрономии (С. Я. Румовский) были учениками Эйлера. Некоторые из его потомков до сих пор живут в России.

Л.Эйлер внес очень большой вклад в развитие математического анализа.

Цель реферата – изучить историю развития математического анализа в XVIII веке.


1 Понятие математического анализа. Исторический очерк

Математический анализ - совокупность разделов математики, посвящённых исследованию функций и их обобщений методами дифференциального и интегрального исчислений. При столь общей трактовке к анализу следует отнести и функциональный анализ вместе с теорией интеграла Лебега, комплексный анализ (ТФКП), изучающий функции, заданные на комплексной плоскости, нестандартный анализ, изучающий бесконечно малые и бесконечно большие числа, а также вариационное исчисление.

В учебном процессе к анализу относят

· дифференциальное и интегральное исчисление

· теорию рядов (функциональных, степенных и Фурье) и многомерных интегралов

· векторный анализ.

При этом элементы функционального анализа и теории интеграла Лебега даются факультативно, а ТФКП, вариационное исчисление, теория дифференциальных уравнений читаются отдельными курсами. Строгость изложения следует образцам конца XIX века и в частности использует наивную теорию множеств.

Предшественниками математического анализа были античный метод исчерпывания и метод неделимых. Все три направления, включая анализ, роднит общая исходная идея: разложение на бесконечно малые элементы, природа которых, впрочем, представлялась авторам идеи довольно туманно. Алгебраический подход (исчисление бесконечно малых) начинает появляться у Валлиса, Джеймса Грегори и Барроу. В полной мере новое исчисление как систему создал Ньютон, который, однако, долгое время не публиковал свои открытия.[1]

Официальной датой рождения дифференциального исчисления можно считать май 1684, когда Лейбниц опубликовал первую статью «Новый метод максимумов и минимумов…»[2] . Эта статья в сжатой и малодоступной форме излагала принципы нового метода, названного дифференциальным исчислением.

В конце XVII века вокруг Лейбница возникает кружок, виднейшими представителями которого были братья Бернулли, Якоб и Иоганн, и Лопиталь. В 1696, используя лекции И. Бернулли, Лопиталь написал первый учебник[3] , излагавший новый метод в применении к теории плоских кривых. Он назвал его «Анализ бесконечно малых», дав тем самым и одно из названий новому разделу математики. В основу изложения положено понятие переменных величин, между которыми имеется некоторая связь, из-за которой изменение одной влечёт изменение другой. У Лопиталя эта связь даётся при помощи плоских кривых: если M - подвижная точка плоской кривой, то её декартовы координаты x и y, именуемые диаметром и ординатой кривой, суть переменные, причём изменение x влечёт изменение y. Понятие функции отсутствует: желая сказать, что зависимость переменных задана, Лопиталь говорит, что «известна природа кривой». Понятие дифференциала вводится так:

«Бесконечно малая часть, на которую непрерывно увеличивается или уменьшается переменная величина, называется ее дифференциалом… Для обозначения дифференциала переменной величины, которая сама выражается одной буквой, мы будем пользоваться знаком или символом d.[4] http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7 - cite_note-4#cite_note-4 … Бесконечно малая часть, на которую непрерывно увеличивается или уменьшается дифференциал переменной величины, называется … вторым дифференциалом».[5]

Эти определения поясняются геометрически, при этом на рисунке бесконечно малые приращения изображены конечными. Рассмотрение опирается на два требования (аксиомы). Первое:

Требуется, чтобы две величины, отличающиеся друг от друга лишь на бесконечно малую величину, можно было брать безразлично одну вместо другой. [6]

Отсюда получается x + dx = x, далее

dxy = (x + dx)(y + dy) − xy = xdy + ydx + dxdy = (x + dx)dy + ydx = xdy + ydx

и проч. правила дифференцирования. Второе требование гласит:

Требуется, чтобы можно было рассматривать кривую линию как совокупность бесконечного множества бесконечно малых прямых линий.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 522
Бесплатно скачать Реферат: Вклад Л.Эйлера в развитие математического анализа