Реферат: Вклад Л.Эйлера в развитие математического анализа
поэтому коэффициент q является удвоенной производной производной f(x), то есть
и т. д.[24]
Такой подход к трактовке понятия производной используется в современной алгебре и послужил основой для создания теории аналитических функций Вейерштрасса.
Лагранж оперировал такими рядами как формальными и получил ряд замечательных теорем. В частности, впервые и вполне строго доказал разрешимость начальной задачи для обыкновенных дифференциальных уравнений в формальных степенных рядах.
Вопрос об оценке точности приближений, доставляемых частными суммами ряда Тейлора, впервые был поставлен именно Лагранжем: в конце Теории аналитических функций он вывел то, что теперь называют формулой Тейлора с остаточным членом в форме Лагранжа.[18] Однако, в противоположность современным авторам, Лагранж не видел нужды в употреблении этого результата для обоснования сходимости ряда Тейлора.
Вопрос о том, действительно ли функции, употребимые в анализе, могут быть разложены в степенной ряд, впоследствии стал предметом дискуссии. Конечно, Лагранжу было известно, что в некоторых точках элементарные функции могут не разлагаться в степенной ряд, однако в этих точка они и недифференцируемы ни в каком смысле. Коши в своём Алгебраическом анализе привёл в качестве контрпримера функцию
доопределённую нулём в нуле. Эта функция всюду гладкая на вещественной оси и в нуле имеет нулевой ряд Маклорена, который, следовательно, не сходится к значению f(x). Против этого примера Пуассон возразил, что Лагранж определял функцию как единое аналитическое выражение, в примере Коши же функция задана по разному в нуле, и при . Лишь в конце XIX века Прингсхейм[19] доказал, что существует бесконечно дифференцируемая функция, заданная единым выражением, ряд Маклорена для которой расходится. Пример такой функцией доставляет выражение
.
В XVIII веке были разработаны и практически применены такие разделы анализа, как вариационное исчисление, обыкновенные дифференциальные уравнения и дифференциальные уравнения в частных производных, преобразования Фурье и производящие функции. На фундаменте анализа возникла математическая физика, аналитические методы глубоко проникли в геометрию и даже в теорию чисел.
В XIX веке Коши первым дал анализу твёрдое логическое обоснование, введя понятие предела последовательности, он же открыл новую страницу комплексного анализа. Пуассон, Лиувилль, Фурье и другие изучали дифференциальные уравнения в частных производных и гармонический анализ.
В последней трети XIX века Вейерштрасс произвёл арифметизацию анализа, полагая геометрическое обоснование недостаточным, и предложил классическое определение предела через ε-δ-язык. Он же создал первую строгую теорию множества вещественных чисел. В это же время попытки усовершенствования теоремы об интегрируемости по Риману привели к созданию классификации разрывности вещественных функций. Также были открыты «патологические» примеры (нигде не дифференцируемые непрерывные функции, заполняющие пространство кривые). В связи с этим Жордан разработал теорию меры, а Кантор - теорию множеств, и в начале XX века математический анализ был формализован с их помощью. Другим важным событием XX века стала разработка нестандартного анализа как альтернативного подхода к обоснованию анализа.
Заключение
Завершая работу над рефератом можно прийти к выводу, что математический анализ – это совокупность разделов математики, посвященных исследованию функций и их обобщений методами дифференциального и интегрального исчислений. В него также входят теории функций действительного и комплексного переменного, теория дифференциальных уравнений, вариационное исчисление ряд других математических дисциплин.
Большой вклад в развитие математического анализа внес Л.Эйлер. Он принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. Он был прежде всего математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. Трудно даже перечислить все отрасли, в которых трудился великий учёный.
Список литературы
1. Артемьева Т. В. Леонард Эйлер как философ // Философия в Петербургской Академии наук XVIII века. - СПб.: 1999. - 182 с.
2. Гиндикин С. Г. Рассказы о физиках и математиках. - 3-е изд., расш. - М.: МЦНМО, 2001. - 465 с.
3. Делоне Б. Н. Леонард Эйлер // Квант. - 1974. - № 5.
4. К 250-летию со дня рождения Л. Эйлера: Сборник. - Изд-во АН СССР, 1958.
5. Летопись Российской Академии наук. Том 1. 1724-1802. - М.: Наука, 2000.
6. Математика XVIII столетия / Под редакцией А. П. Юшкевича. - М.: Наука, 1972. - Т. 3. - (История математики в 3-х томах).
7. Полякова Т. С. Леонард Эйлер и математическое образование в России. - КомКнига, 2007. - 184 с.
8. Прудников В. Е. Русские педагоги-математики XVIII-XIX веков. - 1956.
9. Юшкевич А. П. История математики в России. - М.: Наука, 1968.
[1] Ньютон И. Математические работы. M, 1937.
[2] Leibniz //Acta Eroditorum, 1684. L.M.S., т. V, c. 220—226. Рус. пер.: Успехи Мат. Наук, т. 3, в. 1 (23), с. 166—173.
[3] Лопиталь. Анализ бесконечно малых. М.-Л.:ГТТИ, 1935.
[4] Там же. Гл.1, опр.2