Реферат: Вклад Л.Эйлера в развитие математического анализа
,
достигающее экстремальных значений в точках перегиба кривой, отношению же dy к dx не придаётся никакого особого значения.
Примечательно нахождение точек экстремума. Если при непрерывном увеличении диаметра x ордината y сначала возрастает, а затем убывает, то дифференциал dy сначала положителен по сравнению с dx, а потом отрицателен.
Но всякая непрерывно возрастающая или убывающая величина не может превратиться из положительной в отрицательную, не проходя через бесконечность или нуль… Отсюда следует, что дифференциал наибольшей и наименьшей величины должен равняться нулю или бесконечности.
Вероятно, эта формулировка не безупречна, если вспомнить о первом требовании: пусть, скажем, y = x2, тогда в силу первого требования
2xdx + dx2 = 2xdx;
в нуле правая часть равна нулю, а левая нет. Видимо следовало сказать, что dy можно преобразовать в соответствии с первым требованием так, чтобы в точке максимума dy = 0. В примерах все само собой понятно, и лишь в теории точек перегиба Лопиталь пишет, что dy равен нулю в точке максимума, будучи разделён на dx[8]
Далее, при помощи одних дифференциалов формулируются условия экстремума и рассмотрено большое число сложных задач, относящихся в основном к дифференциальной геометрии на плоскости. В конце книги, в гл. 10, изложено то, что теперь называют правилом Лопиталя, хотя и в не совсем обычной форме. Пусть величина ординаты y кривой выражена дробью, числитель и знаменатель которой обращаются в нуль при x = a. Тогда точка кривой с x = a имеет ординату y, равную отношению дифференциала числителя к дифференциалу знаменателя, взятому при x = a.
По замыслу Лопиталя написанное им составляло первую часть «Анализа», вторая же должна была содержать интегральное исчисление, то есть способ отыскания связи переменных по известной связи их дифференциалов. Первое его изложение дано Иоганном Бернулли в его «Математических лекциях о методе интеграла»[9] . Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка.
2 Вклад Л.Эйлера в развитие математического анализа
Леонард Эйлер (Euler, Leonhard) (1707–1783) входит в первую пятерку величайших математиков всех времен и народов. Родился в Базеле (Швейцария) 15 апреля 1707 в семье пастора и провел детство в близлежащем селении, где его отец получил приход. Здесь на лоне сельской природы, в благочестивой обстановке скромного пасторского дома Леонард получил начальное воспитание, наложившее глубокий отпечаток на всю его последующую жизнь и мировоззрение. Обучение в гимназии в те времена было непродолжительным. Осенью 1720 тринадцатилетний Эйлер поступил в Базельский университет, через три года окончил низший – философский факультет и записался, по желанию отца, на теологический факультет. Летом 1724 на годичном университетском акте он прочел по-латыни речь о сравнении картезианской и ньютонианской философии. Проявив интерес к математике, он привлек к себе внимание Иоганна Бернулли. Профессор стал лично руководить самостоятельными занятиями юноши и вскоре публично признал, что от проницательности и остроты ума юного Эйлера он ожидает самых больших успехов.
Еще в 1725 Леонард Эйлер выразил желание сопровождать сыновей своего учителя в Россию, куда они были приглашены в открывавшуюся тогда – по воле Петра Великого – Петербургскую Академию наук. На следующий год получил приглашение и сам. Покинул Базель весной 1727 и после семинедельного путешествия прибыл в Петербург. Здесь он был зачислен сначала адъюнктом по кафедре высшей математики, в 1731 стал академиком (профессором), получив кафедру теоретической и экспериментальной физики, а затем (1733) кафедру высшей математики.
Сразу же по приезде в Петербург он полностью погрузился в научную работу и тогда же поразил всех плодотворностью своей деятельности. Многочисленные его статьи в академических ежегодниках, первоначально посвященные преимущественно задачам механики, скоро принесли ему всемирную известность, а позже способствовали и славе петербургских академических изданий в Западной Европе. Непрерывный поток сочинений Эйлера печатался с тех пор в трудах Академии в течение целого века.
Наряду с теоретическими исследованиями, Эйлер уделял много времени и практической деятельности, исполняя многочисленные поручения Академии наук. Так, он обследовал разнообразные приборы и механизмы, участвовал в обсуждении способов подъема большого колокола в Московском кремле и т.п. Одновременно он читал лекции в академической гимназии, работал в астрономической обсерватории, сотрудничал в издании Санкт-Петербургских ведомостей, вел большую редакционную работу в академических изданиях и пр. В 1735 Эйлер принял участие в работе Географического департамента Академии, внеся большой вклад в развитие картографии России. Неутомимая работоспособность Эйлера не была прервана даже полной потерей правого глаза, постигшей его в результате болезни в 1738.
Осенью 1740 внутренняя обстановка в России осложнилась. Это побудило Эйлера принять приглашение прусского короля, и летом 1741 он переехал в Берлин, где вскоре возглавил математический класс в реорганизованной Берлинской Академии наук и словесности. Годы, проведенные Эйлером в Берлине, были наиболее плодотворными в его научной деятельности. На этот период падает и его участие в ряде острых философско-научных дискуссий, в том числе о принципе наименьшего действия. Переезд в Берлин не прервал, однако, тесных связей Эйлера с Петербургской Академией наук. Он по-прежнему регулярно посылал в Россию свои сочинения, участвовал во всякого рода экспертизах, обучал посланных к нему из России учеников, подбирал ученых на замещение вакантных должностей в Академии и выполнял много других поручений.
Религиозность и характер Эйлера не соответствовали окружению «вольнодумного» Фридриха Великого. Это привело к постепенному осложнению отношений между Эйлером и королем, который при этом отлично понимал, что Эйлер является гордостью Королевской Академии. В последние годы своей берлинской жизни Эйлер исполнял фактически обязанности президента Академии, но должности этой так и не получил. В итоге летом 1766, несмотря на сопротивление короля, Эйлер принял приглашение Екатерины Великой и вернулся в Петербург, где оставался затем до конца своей жизни.
В том же 1766 Эйлер почти полностью потерял зрение и на левый глаз. Однако это не помешало продолжению его деятельности. С помощью нескольких учеников, писавших под его диктовку и оформлявших его труды, полуслепой Эйлер подготовил в последние годы своей жизни еще несколько сотен научных работ.
В начале сентября 1783 Эйлер почувствовал легкое недомогание. 18 сентября он еще занимался математическими исследованиями, но неожиданно потерял сознание и, по меткому выражению панегириста, «прекратил вычислять и жить».
Похоронен на Смоленском лютеранском кладбище в Петербурге, откуда его прах перенесен осенью 1956 в некрополь Александро-Невской лавры.
Научное наследие Леонарда Эйлера колоссально. Ему принадлежат классические результаты в математическом анализе. Он продвинул его обоснование, существенно развил интегральное исчисление, методы интегрирования обыкновенных дифференциальных уравнений и уравнений в частных производных. Эйлеру принадлежит знаменитый шеститомный курс математического анализа, включающий «Введение в анализ бесконечно малых», «Дифференциальное исчисление» и «Интегральное исчисление» (1748–1770). На этой «аналитической трилогии» учились многие поколения математиков всего мира.
Эйлер получил основные уравнения вариационного исчисления и определил пути дальнейшего его развития, подведя главные итоги своих исследований в этой области в монографии «Метод нахождения кривых линий, обладающих свойствами максимума или минимума» (1744). Значительны заслуги Эйлера в развитии теории функций, дифференциальной геометрии, вычислительной математики, теории чисел. Двухтомный курс Эйлера «Полное руководство по алгебре» (1770) выдержал около 30 изданий на шести европейских языках.
Фундаментальные результаты принадлежат Леонарду Эйлеру в рациональной механике. Он впервые дал последовательно аналитическое изложение механики материальной точки, рассмотрев в своей двухтомной «Механике» (1736) движение свободной и несвободной точки в пустоте и в сопротивляющейся среде. Позже Эйлер заложил основы кинематики и динамики твердого тела, получив соответствующие общие уравнения. Итоги этих исследований Эйлера собраны в его «Теории движения твердых тел» (1765). Совокупность уравнений динамики, представляющих законы количества движения и момента количества движения, крупнейший историк механики Клиффорд Трусделл предложил называть «Эйлеровыми законами механики».
В 1752 была опубликована статья Эйлера «Открытие нового принципа механики», в которой он сформулировал в общем виде ньютоновы уравнения движения в неподвижной системе координат, открыв путь для изучения механики сплошных сред. На этой основе он дал вывод классических уравнений гидродинамики идеальной жидкости, найдя и ряд их первых интегралов. Значительны также его работы по акустике. При этом ему принадлежит введение как «эйлеровых» (связанных с системой отсчета наблюдателя), так и «лагранжевых» (в сопутствующей движущемуся объекту системе отсчета) координат.
Замечательны многочисленные работы Эйлера по небесной механике, среди которых наиболее известна его «Новая теория движения Луны» (1772), существенно продвинувшая важнейший для мореходства того времени раздел небесной механики.
Наряду с общетеоретическими исследованиями, Эйлеру принадлежит ряд важных работ по прикладным наукам. Среди них первое место занимает теория корабля. Вопросы плавучести, остойчивости корабля и других его мореходных качеств были разработаны Эйлером в его двухтомной «Корабельной науке» (1749), а некоторые вопросы строительной механики корабля – в последующих работах. Более доступное изложение теории корабля он дал в «Полной теории строения и вождения кораблей» (1773), которая использовалась в качестве практического руководства не только в России.
Значительный успех имели комментарии Эйлера к «Новым началам артиллерии» Б.Робинса (1745), содержавшие, наряду с другими его сочинениями, важные элементы внешней баллистики, а также разъяснение гидродинамического «парадокса Даламбера». Эйлер заложил теорию гидравлических турбин, толчком для развития которой явилось изобретение реактивного «сегнерова колеса». Ему принадлежит и создание теории устойчивости стержней при продольном нагружении, приобретшей особую важность спустя столетие.
Много работ Эйлера посвящено различным вопросам физики, главным образом геометрической оптике. Особого упоминания заслуживают изданные Эйлером три тома «Писем к немецкой принцессе о разных предметах физики и философии» (1768–1772), выдержавшие впоследствии около 40 изданий на девяти европейских языках. Эти «Письма» были своего рода учебным руководством по основам науки того времени, хотя собственно философская сторона их и не соответствовала духу эпохи Просвещения.
Современная пятитомная «Математическая энциклопедия» указывает двадцать математических объектов (уравнений, формул, методов), которые носят сейчас имя Эйлера. Его имя носит и ряд фундаментальных уравнений гидродинамики и механики твердого тела.
Наряду с многочисленными собственно научными результатами, Эйлеру принадлежит историческая заслуга создания современного научного языка. Он является единственным автором середины XVIII в., труды которого читаются даже сегодня без всякого труда.