Реферат: Волны в упругой среде. Волновое уравнение

Всякий раз, когда из физических соображений можно установить, что та или иная физическая величина s удовлетворяет уравнению вида

(2.6а)

мы сможем на основании сообщенных здесь математических сведений за­ключить, что процесс изменений этой величины носит характер плоской, волны, распространяющейся в ту или другую сторону со скоростью и, или суперпозиции таких волн.

Вид функций f1 , f2 опре­деляется характером движения источника волн, а также явлениями, происходящими на границе среды.

Пусть источником волн является плоскость х =0, при­чем на этой плоскости величина S колеблется но закону s =Acoswt. В этом случае от плоскости х= 0 распространяются вправо и влево волны

s= Acos(wtkx), k =.

Из линейности волнового уравнения следует, что если ему удов­летворяют функции s1 , s2 ,s3 , ... в отдельности, то ему удовлетворяет также функция

S == S1 + S2 + S3 + ...

(принцип, суперпозиции).

Рассмотрим несколько примеров.

а) Волновому уравнению удовлетворяют синусоидальные бегущие волны

s1 = Aсоs(wt — kx), s2 = Acos(wt+kx).

На основании принципа суперпозиции волновому уравнению удовлетво­ряет стоячая волна

s=2Acoskx coswt

являющаяся суперпозицией только что рассмотренных синусоидальных бегущих волн.

б) Волновому уравнению на основании принципа суперпозиции удо­влетворяет всякая функция вида

S=

Это—функция вида f(at—bx); она изображает несинусоидальную волну, распространяющуюся без деформации в сторону возрастающих х.

в) Пусть волны S1 , S2 , имеющие вид коротких импульсов, распростра­няются навстречу одна другой. В некоторый момент моментальный снимок суперпозиции S1 + S2 этих волн имеет вид, показанный на рис. 4,а. Через некоторое время моментальный снимок волны будет иметь вид, показанный на рис. 4, б, – волны пройдут «одна сквозь другую» и притом каждая так, как будто другой не существует.

§2. Упругие волны в стержне.

1. волновое уравнение.

В предыдущем параграфе мы рассмотрели математическую сторону волнового уравнения. В этом же параграфе я хотел бы на конкретном примере рассмотреть как работает тот математический аппарат.

Рисунок 4

Применим второй закон Ньютона и закон сложения сил к движению куска стержня, заключенного между двумя плоскостями x и х+х . Масса этого куска равна р0 S0 х, где р0 и S0 – соответственно плотность и сечение в отсутствие деформации. Пусть – смещение центра тяжести рассматриваемого куска. Тогда

слева стоит произведение массы куска на ускорение д­­­2 /д t2 его центра тяжести, справа – результирующая внешних сил, действующая на кусок.

Разделим уравнение на S0 :

(2.7)

К-во Просмотров: 721
Бесплатно скачать Реферат: Волны в упругой среде. Волновое уравнение