Реферат: Волны в упругой среде. Волновое уравнение
Всякий раз, когда из физических соображений можно установить, что та или иная физическая величина s удовлетворяет уравнению вида
(2.6а)
мы сможем на основании сообщенных здесь математических сведений заключить, что процесс изменений этой величины носит характер плоской, волны, распространяющейся в ту или другую сторону со скоростью и, или суперпозиции таких волн.
Вид функций f1 , f2 определяется характером движения источника волн, а также явлениями, происходящими на границе среды.
Пусть источником волн является плоскость х =0, причем на этой плоскости величина S колеблется но закону s =Acoswt. В этом случае от плоскости х= 0 распространяются вправо и влево волны
s= Acos(wtkx), k =.
Из линейности волнового уравнения следует, что если ему удовлетворяют функции s1 , s2 ,s3 , ... в отдельности, то ему удовлетворяет также функция
S == S1 + S2 + S3 + ...
(принцип, суперпозиции).
Рассмотрим несколько примеров.
а) Волновому уравнению удовлетворяют синусоидальные бегущие волны
s1 = Aсоs(wt — kx), s2 = Acos(wt+kx).
На основании принципа суперпозиции волновому уравнению удовлетворяет стоячая волна
s=2Acoskx coswt
являющаяся суперпозицией только что рассмотренных синусоидальных бегущих волн.
б) Волновому уравнению на основании принципа суперпозиции удовлетворяет всякая функция вида
S=
Это—функция вида f(at—bx); она изображает несинусоидальную волну, распространяющуюся без деформации в сторону возрастающих х.
|
в) Пусть волны S1 , S2 , имеющие вид коротких импульсов, распространяются навстречу одна другой. В некоторый момент моментальный снимок суперпозиции S1 + S2 этих волн имеет вид, показанный на рис. 4,а. Через некоторое время моментальный снимок волны будет иметь вид, показанный на рис. 4, б, – волны пройдут «одна сквозь другую» и притом каждая так, как будто другой не существует.
§2. Упругие волны в стержне.
1. волновое уравнение.
В предыдущем параграфе мы рассмотрели математическую сторону волнового уравнения. В этом же параграфе я хотел бы на конкретном примере рассмотреть как работает тот математический аппарат.
Рисунок 4 |
Применим второй закон Ньютона и закон сложения сил к движению куска стержня, заключенного между двумя плоскостями x и х+х . Масса этого куска равна р0 S0 х, где р0 и S0 – соответственно плотность и сечение в отсутствие деформации. Пусть – смещение центра тяжести рассматриваемого куска. Тогда
слева стоит произведение массы куска на ускорение д2 /д t2 его центра тяжести, справа – результирующая внешних сил, действующая на кусок.
Разделим уравнение на S0 :
(2.7)