Реферат: Вписанные и описанные окружности в треугольниках и четырехугольниках

Цели:

Углубить знания по теме «Вписанная и описанная окружности в треугольниках и четырехугольниках»

Задачи:

Систематизировать знания по этой теме

Подготовиться к задачам повышенной сложности в ЕГЭ

Теория

Вписанная окружность

Определение: если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник – описанным около этой окружности.

Теорема: в любой треугольник можно вписать окружность, и притом только одну.

Центр окружности, вписанной в треугольник, находится на пересечении биссектрис треугольника.

Свойство: в любом описанном четырехугольнике суммы противоположных сторон равны.

Признак: если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Описанная окружность

Определение: если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник – вписанным в эту окружность.

Теорема: около любого треугольника можно описать окружность, и притом только одну.

Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.

Свойство: в любом вписанном четырехугольнике сумма противоположных углов равна 180˚.

Признак: если сумма противоположных углов четырехугольника равна 180˚, то около него можно описать окружность.

Взаимное расположение прямой и окружности:

AB – касательная, если OH = r

Свойство касательной:

AB ┴ OH (OH – радиус, проведенный в точку касания H)

Свойство отрезков касательных, проведенных из одной точки:

AB = AC

ﮮ BAO = ﮮ CAO

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c2 = a2 + b2

Медиана

Медиана (от лат. mediana — средняя), отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 327
Бесплатно скачать Реферат: Вписанные и описанные окружности в треугольниках и четырехугольниках