Реферат: Вплив ішемічного передстану на морфофункціональну адаптацію серця до некрозу міокарда при введенні алкілселенонафтиридину
У тварин у стадії ІПС-2 ЕДС в міокарді шлуночків серця залишалася підвищеною – (7,98±0,49) мкг/мг при p<0,05. Рівень ЕДС у ПШ [(8,04±0,27) мкг/мг при p<0,05] був вищим, ніж у ЛШ [(7,92±0,69) мкг/мг при p<0,1]. Вміст води в міокарді шлуночків серця знижувався відносно показника щурів у стадії ІПС-1 до (81,54±0,42)% при p<0,1. У міокарді ПШ і ЛШ вміст води був майже однаковим – (81,42±0,30) і (81,66±0,53)% відповідно.
При порівнянні результатів дослідження встановлено, що рівень ЕДС не залежав від вмісту води в міокарді шлуночків серця. У стадії ІПС-2 вміст води в міокарді ПШ був більше контролю в (1,010±0,002) раза (Rxy±mr=0,824±0, 200 при p<0,01), а ЛШ – в (1,020±0,003) раза (Rxy±mr=0,960±0,049 при p<0,001), результати ЕДС перевищували контроль в (1,39±0,11) раза (Rxy±mr=0,909±0,148 при p<0,001) і в (1,27±0,05) раза (Rxy±mr=0,901±0,153 при p<0,001) відповідно.
Активність каталази в гомогенаті міокарда шлуночків серця відносно показника щурів у стадії ІПС-1 підвищувалася до (102,57±4,97) мМ/хв (p<0,05), але була нижче контролю (при p<0,5). Внутрішньошкірна РО2 так само підвищувалася – до (30,67±2,18) мм рт. ст. при p<0,01, але залишалася нижче контролю (p<0,5).
Аналіз результатів дослідження у тварин після моделювання ІПС показав, що в стадії ІПС-2 відбуваються позитивні зрушення відносно показників у стадії ІПС-1. Напевно, транзиторні ішемічні зміни в міокарді шлуночків серця тварин у стадії ІПС-2 зменшилися або не були такими значущими, як у стадії ІПС-1. Тому в процесі моделювання некоронарогенного НМ у стадії ІПС-1 загинуло 60% тварин. Морфофункціональна адаптація серця у тварин, що вижили, супроводжувалася збільшенням маси ПШ на (38,6±4,1)% (Rxy±mr=0,919±0,139 при p<0,001), а ЛШ – на (9,5±2,2)% (Rxy±mr=0,873±0,173 при p<0,001).
При моделюванні некоронарогенного НМ у стадії ІПС-1 на гістологічних препаратах виявлені неоднакової інтенсивності осередки гіпоксичних ушкоджень міокарда. У тварин, які загинули в процесі експерименту, ішемічна деструкція міокарда поширювалася на всю товщу стінки ЛШ. У стінці ПШ на тлі незмінених м’язових волокон специфічного жовто-коричневого кольору виділялися осередки ішемічної деструкції м’язових волокон, які були забарвлені в яскраво-червоний колір і займали до 1/3 товщини стінки. У перехідній зоні між ПШ і ЛШ (проекція міжшлуночкової борозни) були виявлені великі осередки геморагічної інфільтрації.
У тварин, які загинули у процесі експерименту, у міокарді ЛШ визначали численні фуксинофільні осередки гіпоксичного пошкодження, які зливалися та поширювалися на більшу групу волокон через усю товщу стінки шлуночка.
У тварин через 6 год від початку моделювання НМ у стадії ІПС-1 показники ЕДС і вмісту води були значно вищими, ніж після моделювання НМ без ІПС. У міокарді шлуночків серця ЕДС становила (9,41±0,15) мкг/мг.
Внутрішньошкірна РО2 була значно знижена та коливалася протягом 6 год від початку моделювання НМ від (21,76±2,54) мм рт. ст. у перші 2 год до (20,67±4,15) мм рт. ст. після 4-ї години і до (21,50±1,92) мм рт. ст. (p<0,001) на 6-й годині експерименту. Встановлено, що у тварин, які загинули в процесі експерименту, рівень внутрішньошкірної РО2 був значно нижчим, ніж у тих, що вижили.
Активність каталази в гомогенаті міокарда шлуночків серця відносно такої у щурів попередніх груп знижувалася до (65,35±4,75) мМ/хв (p<0,001).
На ЕКГ визначали зниження електричної активності міокарда з ознаками дистрофії та некрозу.
Аналіз одержаних результатів дає можливість зробити припущення, що при моделюванні НМ у стадії ІПС-1 транзиторні ішемічні зміни в міокарді шлуночків серця є головними при розвитку дизадаптації. При цьому морфологічні прояви дизадаптації до некрозу полягають у переході транзиторних ішемічних змін у стаціонарне гіпоксичне ураження – дистрофію міокарда.
При моделюванні НМ у стадії ІПС-2 виживаність тварин становила 100%. Спостерігалася позитивна динаміка адаптації серця. Маса ПШ збільшувалася відносно контролю на (24,2±0,5)% (Rxy±mr=0,792±0,216 при p<0,05), а ЛШ – на (8,6±2,8)% (Rxy±mr=0,933±0,128 при p<0,001) з розвитком менш грубих фуксинофільних осередків гіпоксичних змін кардіоміоцитів. Помірно знижувалася ЕДС – до (8,68±0,24) мкг/мг при p<0,05: у ПШ – (8,660±0,128) мкг/мг при p<0,05; у ЛШ – (8,70±0,12) мкг/мг при p<0,05, але практично незмінним залишався вміст води – (83, 19±0,61)%: у ПШ – (83,08±0,78)% при p<0,05; у ЛШ – (83,30±0,48)% при p<0,05. Визначалося підвищення внутрішньошкірної РО2 у процесі експерименту: через 2 год – (25,90±0,93) мм рт. ст. при p<0,01; через 4 год – (27,33±1,11) мм рт. ст. при p<0,01 і через 6 год – (26,93±1,01) мм рт. ст. (p<0,05) на тлі невеликого підвищення активності каталази до (72,32± 6,97) мМ/хв (p<0,001).
При порівнянні одержаних кількісних і якісних показників морфологічних змін серця при НМ у різних стадіях ІПС встановлено, що більші зміни, з деструкцією міокарда, відбуваються при моделюванні НМ у стадії ІПС-1.
Виявилося, що зміни маси міокарда ЛШ у щурів при ІПС-1 і при моделюванні НМ у стадії ІПС-1 майже однакові, що вказує на кардіопротекторну дію ІПС навіть у першій стадії. Однак маса міокарда ПШ у щурів, яким моделювали НМ у стадії ІПС-1, значно перевищувала показники групи ІПС-1.
У результаті дослідження встановлено, що при моделюванні НМ у стадіях ІПС-1 і ІПС-2 простежувалася позитивна динаміка, що відбивало підвищення резистентності кардіоміоцитів під впливом ІПС. Дані результати дослідження показують також різницю у впливі ІПС на міокард ПШ і ЛШ. Значні зміни відбувалися в міокарді ПШ. Можливо, це пов’язано з різною толерантністю міокарда ПШ і ЛШ до гіпоксії. Останнє могло стати причиною появи суперечливих даних у літературі щодо підвищення резистентності кардіоміоцитів під впливом ІПС.
У літературних джерелах є думка щодо медикаментозного підвищення ефективності ІПС з метою збільшення резистентності міокарда до ішемії, без виникнення некрозу, та поліпшення прогнозу у хворих з інфарктом міокарда та НМ (F. Tomaiеt al., 1999; J. Siegrist, 2001; H. T. Sommerschild, 2001).
У нашому дослідженні вивчено вплив селенопротеїну – АСНР – на резистентність та морфофункціональну адаптацію серця до НМ, а також на ефективність ІПС.
Виявилося, що уведення АСНР протягом 7 днів не викликає різких морфологічних змін у міокарді шлуночків серця. Однак виявлено підвищення ЕДС у міокарді шлуночків серця до (6,9±0,7) мкг/мг. Рівень ЕДС у ПШ [(6,54± 0,73) мкг/мг при p<0,5] був нижчим, ніж у ЛШ [(7,06±0,59) мкг/мг при p<0,1]. Вміст води в міокарді шлуночків серця був підвищений відносно контролю – до (81,87±0,70)% при p<0,1. У міокарді ПШ і ЛШ вміст води був майже однаковим – (81,90±0,64) і (81,84±0,75)% відповідно.
При порівнянні результатів дослідження встановлено, що рівень ЕДС практично не пов’язаний з вмістом води в міокарді шлуночків серця. Вміст води в міокарді ПШ був більше контролю в (1,015±0,004) раза (Rxy±mr=0,879± 0,168 при p<0,001), а ЛШ – в (1,025±0,006) раза (Rxy±mr=0,975±0,078 при p<0,001). Результати ЕДС перевищували контроль в (1,23±0,03) раза (Rxy±mr= 0,956±0,104 при p<0,001) і (1,250±0,045) раза (Rxy±mr=0,935±0,126 при p<0,001) відповідно.
Активність каталази в гомогенаті міокарда шлуночків серця була знижена відносно контролю – до (102,85±2,86) мМ/хв (p<0,5). Внутрішньошкірна РО2 у порівнянні з контролем була майже не змінена (31,73±1,57) мм рт. ст.
У процесі моделювання НМ із попереднім уведенням АСНР загинуло 20% тварин. Встановлено підвищення маси міокарда ПШ і ЛШ відносно «селенового» контролю на (20,00±3,38)% (Rxy±mr=0,946±0,115 при p<0,001) і (2,60±1,22)% (Rxy±mr=0,973±0,0,81 при p<0,001). На гістологічних препаратах у ПШ виявлені великі фуксинофільні осередки. М’язові волокна деформовані, ядра слабко або зовсім не забарвлені. При порівняльному аналізі ступеня гіпоксичного пошкодження міокарда виявлено більш грубі зміни в міокарді ПШ.
ЕДС у міокарді шлуночків серця залишалася підвищеною – (9,130± 0,116) мкг/мг при p<0,01. Рівень ЕДС у ПШ [(9,020±0,064) мкг/мг при p<0,05] був нижчим, ніж у ЛШ [(9,240±0,088) мкг/мг при p<0,01]. Вміст води в міокарді шлуночків серця підвищувався до (83,49±0,59)% при p<0,05. У міокарді ЛШ вміст води був вищим, ніж у ПШ – (83,94±0,39) і (83,04±0,46)% при p<0,05 відповідно. Встановлено, що рівень ЕДС не залежав від вмісту води в міокарді шлуночків серця: у ПШ він був вище контролю в (1,39±0,14) раза (Rxy±mr= 0,830±0, 197 при p<0,01), а у ЛШ – в (1,31±0,10) раза (Rxy±mr=0,766±0,226 при p<0,05). Вміст води в ПШ перевищував контроль в (1,014±0,003) раза (Rxy±mr= 0,982±0,067 при p<0,001), у ЛШ – в (1,026±0,006) раза (Rxy±mr=0,797±0,214 при p<0,05).
Активність каталази в гомогенаті міокарда шлуночків серця була (96,81± 7,4) мМ/хв (p<0,05). Показник внутрішньошкірної РО2 залежав від експозиції експерименту: через 2 год – (25,93±2,24) мм рт. ст. при p<0,05, через 4 год – (23,90±3,44) мм рт. ст. при p<0,01 і через 6 год – (27,54±1,08) мм рт. ст. при p<0,05.
На ЕКГ визначали зниження електричної активності міокарда з ознаками дистрофії та легкого ступеня виразності P-pulmonale (РII і РIII), які більшою мірою були виявлені у тварин, які загинули.
Після моделювання НМ у стадії ІПС-1 з попереднім 7-денним уведенням АСНР загинуло 30% тварин. Підвищення маси міокарда ПШ було більшим, ніж ЛШ. У порівнянні з «селеновим» контролем воно було більшим у ПШ на (27,5±4,9)% (Rxy±mr=0,860±0,180 при p<0,01), у ЛШ – на (7,8±2,1)% (Rxy±mr= 0,943±0,118 при p<0,001). На гістологічних препаратах виявлено неоднакової інтенсивності осередки гіпоксичного пошкодження міокарда. У тварин, які загинули в процесі експерименту, деструкція міокарда поширювалася на всю товщу стінки ЛШ. У стінці ПШ серця тварин, що вижили, зміни були майже однакові з виявленими при моделюванні НМ без ІПС і уведення АСНР. На тлі незмінених м’язових волокон специфічного жовто-коричневого кольору виділялися великі осередки деструкції м’язових волокон, забарвлених у яскраво-червоний колір. У ЛШ загиблих тварин були виявлені великі осередки геморагічної інфільтрації. У тварин, що вижили, у міокарді ЛШ були ознаки дифузної геморагії, які зливалися з осередками деструкції, чим нагадували зміни, виявлені у тварин після моделювання НМ в стадії ІПС-1. У міокарді шлуночків серця ЕДС була підвищеною до (9,05±0,10) мкг/мг (p<0,01). У ПШ вона була нижчою, ніж у ЛШ, – (8,96±0,048) і (9,14±0,09) мкг/мг відповідно (p<0,01). Вміст води в міокарді шлуночків серця був (83,92±0,26)% при p<0,05. У міокарді ПШ вміст води був вищим, ніж у ЛШ, – (83,02±0,34) і (82,82±0,14)% відповідно при p<0,05.
Рівень ЕДС не залежав від вмісту води в міокарді шлуночків серця: у ПШ він був вище контролю в (1,390± 0,144) раза (Rxy±mr=0,830±0, 197 при p<0,01), у ЛШ – в (1,31±0,10) раза (Rxy±mr=0,766±0,226 при p<0,05). Вміст води у ПШ перевищував контроль в (1,014±0,003) раза (Rxy±mr=0,982±0,067 при p<0,001), у ЛШ – в (1,026±0,006) раза (Rxy±mr=0,797±0,214 при p<0,05).
Активність каталази в гомогенаті міокарда шлуночків серця була (97,78±1,09) мМ/хв (p<0,01). Показник внутрішньошкірної РО2 залежав від експозиції експерименту: через 2 год – (26, 20±2,09) мм рт. ст. при p<0,01, через 4 год – (27,28±1,17) мм рт. ст. при p<0,05 і через 6 год – (27,57±2, 20) мм рт. ст. при p<0,05.
На ЕКГ визначали збільшення амплітуди зубця R, розширення сегмента STII і STIII з вираженою депресією та появою P-pulmonale (РII і РIII).
У ході дослідження встановлено позитивний вплив ІПС і АСНР на морфофункціональну адаптацію серця до НМ. Однак при моделюванні НМ у стадії ІПС-1 відмічалися зміни, можливо, пов’язані із транзиторною ішемією, які, очевидно, були причиною морфофункціональної дизадаптації в міокарді шлуночків серця. Ми погоджуємося з думкою дослідників, які вважають, що ІПС є важливим чинником ендогенного захисту серця від НМ (F. Tomai et al., 1999; H. T. Sommerschild, 2001). Можливо, при цьому антиоксидантна система відіграє ключову роль у запуску пізнього ІПС (D. Agay et al., 2005). У наших дослідженнях встановлено закономірність – у всіх випадках зниження активності каталази нижче 70 мМм/хв були грубі морфофункціональні зміни в міокарді шлуночків серця.