Реферат: Введение в теорию атома
Постоянная легко определяется из радиальной части. Угловая часть уравнения Лапласа представляет собой дифференциальное уравнение Лежандра. Это второе из двух уравнений системы вида
. (8.13)
8.12. Уравнение Лежандра
Это операторное уравнение на собственные функции и собственные значения. В квантовой механике таковы все уравнения для динамических переменных. Дифференциальное уравнение Лежандра с точностью до постоянного множителя совпадает с операторным уравнением насобственные значения оператора квадрата момента импульса. Напомним, что оператор момента импульса равен
Возводя его в квадрат и вынося влево постоянный множитель, получаем:
Заменяя декартовы координаты шаровыми и производя всю последовательность действий, находим, что слева получается оператор Лежандра:
. (8.14)
На этом основании решения уравнения Лежандра являются также и решениями операторного уравнения на собственные значения квадрата момента импульса. Так получается строгая формула квантования модуля и проекции момента импульса.
8.13. Квадрат модуля момента импульса определяется собственными значениями оператора Лежандра. Для сравнения представим оба выражения:
. (8.15)
Допустимые значения модуля момента импульса свободно вращающейся вокруг центра масс квантовой системы (ротатора) следуют из операторного уравнения (8.15):
. (8.16)
8.14. Уравнение Лежандра содержит две угловые переменные. Их необходимо разделить и исследовать свойства вращения. Раскрывая оператор Лежандра, получаем
. (8.17)
Шаровые функции представим в виде . Их ещё называют сферическими гармониками из-за того, что у них, как и у обычных тригонометрических гармоник – синусоиды и косинусоиды имеются чередующиеся в пространстве пучности и узлы.
Разделим переменные:
Получена система (8.18) из двух дифференциальных уравнений (8.18.1 и 8.18.2), решения которых связаны общей постоянной.
8.15. Одно из них (8.18.1) имеет знакомый вид. Оно идентично уравнению Шрёдингера для плоского ротатора и описывает свойства вращения относительно оси вращения (вдоль переменной долготы). Полное совпадение с плоским ротатором получится лишь при условии, что в атоме H это уравнение характеризует лишь часть всей ситуации и определяет проекцию момента импульса на ось вращения
Из этого уравнения вытекают значения компоненты момента импульса вдоль оси вращения (в нашем случае – вдоль оси аппликат): (8.21)
8.16. Второе из уравнений (8.18.2) системы - дифференциальное уравнение для широты:
(8.22)
Наконец-то обратимся к уравнению Шрёдингера для водородоподобного атома!
8.17. Гамильтониан и уравнение Шрёдингера
. (8.23)
8.17. Несложные преобразования, состоящие только в перемещении и группировке слагаемых, дают следующее: