Реферат: Высшая математика
Следовательно - стационарная точка. Проверим ее на экстремум, для этого
введем обозначения: ,
,
,
тогда ,
,
,
. Т.к.
> 0, то экстремум есть, а т.к.
< 0, то это максимум. Следовательно, при объемах выпуска
и
, достигается максимальная прибыль равная:
Ответ: и достигается при объемах выпуска
и
.
Задание №12. Вопрос №9.
Вычислить неопределенный интеграл:
Решение:
Ответ:
Задание №14. Вопрос №2.
Вычислить несобственный интеграл (или установить его расходимость) .
Решение:
Ответ:Данный несобственный интеграл – расходящийся.
Задание №15. Вопрос №6.
Решить уравнение
Решение:
. Разделив обе части на
, получим
. Проинтегрируем полученное уравнение
. Представим
, как
, тогда
Ответ:Решением данного уравнения является .
Задание №18. Вопрос №9.
Найти общее решение уравнения:
Решение:
Найдем корни характеристического уравнения: , тогда
, следовательно
,
, тогда
фундаментальную систему решений образуют функции:
,
Т.к. действительные и мнимые решения в отдельности являются решениями уравнения, то в качестве линейно независимых частей решений и
, возьмем
,
, тогда общее решение однородного уравнения будет иметь вид:
Представим правую часть уравнения, как и сравним с выражением, задающим правую часть специального вида:
. Имеем
,
, тогда т.к.
- многочлен второй степени, то общий вид правой части:
. Найдем частные решения:
,
,
Сравним коэффициенты при слева и справа, найдем
, решив систему: