Реферат: Высшая математика
Ответ:Заданный предел равен .
Дополнительно Часть I I .
Задание №7. Вопрос №1.
Написать в точке уравнение касательной плоскости к поверхности, заданной уравнением: .
Решение:
Уравнение касательной плоскости к графику функции в точке имеет вид: . Поэтому, продифференцируем заданное уравнение поверхности: . Подставив в полученное уравнение координаты точки вместо значений переменных, и заменив дифференциалы переменных на их приращения, получим:
.
Ответ:Уравнение касательной плоскости к заданной поверхности в заданной точке имеет вид .
Задание №9. Вопрос №8.
Найти наибольшее и наименьшее значение функции в области: .
Решение:
Т.к. заданная функция дифференцируется в замкнутой ограниченной области, то свое наибольшее/наименьшее значение она достигает или в стационарной точке внутри области дифференцирования, или на границе области.
Найдем стационарные точки заданной функции, для этого решим систему:
, точка не принадлежит заданной области дифференцирования, значит стационарных точек внутри области нет, следовательно, наибольшее/наименьшее значение функцией достигается на границе области дифференцирования. Граница области ограничена окружностями и . Найдем наибольшее/наименьшее значение на границах области дифференцирования. Для этого составим функцию Лагранжа:
1. , тогда , , следовательно, система уравнений для определения координат экстремальной точки имеет вид:
Эта система имеет четыре решения:
, , | Точка – точка условного максимума, при этом функция . |
, , | Точка – точка условного максимума, при этом функция . |
, , | Точка – точка условного минимума, при этом функция . |
, , | Точка – точка условного минимума, при этом функция . |
2. , тогда , ,
следовательно, система уравнений для определения координат экстремальной точки имеет вид:
Эта система также имеет четыре решения:
, , | Точка – точка условного максимума, при этом функция . |
, , | Точка – точка условного максимума, при этом функция . |
, , | Точка – точка условного минимума, при этом функция . |
, , | В точке – точка условного минимума, при этом функция . |
Следовательно, заданная функция в заданной области дифференцирования достигает наибольшего значения в точках и и наименьшего в точках и при этом графики функций и касаются окружности в точках , и , соответственно (см. рис.6).
Ответ:Заданная функция при условии имеет и .
Задание №11. Вопрос №6.
Вычислить неопределенный интеграл: .
Решение:
Ответ:
Заданный неопределенный интеграл равен .
Задание №15. Вопрос №1.
Решить уравнение: .
Решение: