Реферат: Задача Лагранжа

Для постановки задачи необходима анализ системы, исследование её особенностей и возможных методов управления системой. Схема, построения в результате такого анализа, является либо изобразительной, либо аналоговой моделью. Таким образом, первый этап построения модели выполняется в процессе постановки задачи. После такого анализа системы уточняется перечень различных вариантов в решения, которые надо оценить. Затем определяются меры общей эффективности этих вариантов. Следовательно, следующий этап заключается в построении такой модели, в которой эффективность системы можно выразить в функции переменных, определяющих систему. Некоторые из этих переменных в реальной системе можно менять, другие переменные менять нельзя. Те переменные, которые можно изменить, назовем “управляемыми”. Различные варианты решения задачи необходимо выразить с помощью управляемых переменных.

Построение математической (символической) модели системы можно начать с перечисления всех элементов системы, которые влияют на эффективность работы системы. Если в качестве меры общей эффективности используется “общие ожидаемые издержки”, то можно начать с исследования изобразительной или аналоговой модели, полученной на стадии постановки задачи. Можно выделить операции и материалы, которым сопоставляется некоторые затраты. При этом получим, например, следующий исходный список:

1. Производственные затраты:

а) закупочная цена сырья;

б) издержки перевозки сырья;

в) стоимость приемки сырья;

г) стоимость хранения сырья;

д) стоимость планирования производства;

е) стоимость наладочных работ в цехе;

ж) стоимость процесса обработки;

з) стоимость хранения запасов в процессе производства;

и) стоимость завершения производства и передачи готовых изделий на склад;

к) стоимость анализа результатов работы группой планирования;

л) стоимость хранения готовых изделий.

2. Затраты на сбыт.

3. Накладные расходы.


2. Задача Лагранжа

Безусловный и условный экстремумы

Важное место в математиком аппарате экономики занимают оптимальные задачи – задачи, которых ищется наилучшее в определенном смысле решение. В экономической практике требуется использовать имеющиеся ресурс наиболее выгодным образом. В экономической теории одним из отправных пунктов является постулат о том, что каждый экономический субъект, имея определенную свободу выбора своего поведения, отыскивает наилучший со своей точки зрения вариант. И оптимизационные задачи служат средством описания поведения экономических субъектов, инструментом исследования закономерностей этого поведения.

Многие задачи оптимизации формулируются следующим образом. Решение, которое должен принять субъект, описывается набором чиселх1,х2,…,хn (или точкой Х=(х1,х2,…,хn) n-мерного пространства). Достоинства того или иного решения определяются значениями функция f(X) = f(х1, х2,…,хn) — целевой функции . Наилучшее решение — это такая точка Х, в которой функция f(Х) принимает наибольшее значение. Задача нахождения такой точки описывается следующим образом:

f(X) ® max.

Если функция f(X) характеризует отрицательные стороны решения (ущерб, убытки и т. п.), то ищется точка Х, в которой значение f(X) минимально:

f(X) ® min.

Минимум и максимум объединяются понятием экстремума. Для определенности мы будем говорить только о задачах максимизации. Поиск минимума не требует специального рассмотрения, поскольку заменой целевой функции f(X) на -f(Х) всегда можно “превратить недостатки в достоинства” и свести минимизацию к максимизации.

Из каких вариантов должен быть выбран наилучший? Иными словами, среди каких точек пространства нужно искать оптимум. Ответ на этот вопрос связан с таким элементом оптимизационной задачи, как множество допустимых решений . В некоторых задачах допустимыми являются любые комбинации чисел х1, х2,…,хnто есть множество допустимых решений - это все рассматриваемое пространство.

В других задачах следует принимать во внимание различные ограничения, означающие, что не все точки пространства доступны при выборе. В содержательных постановках задач это может быть связано, например, с ограниченностью располагаемого количества ресурсов.

Ограничения могут быть представлены в форме равенств вида

g(X) = О

или неравенства

g(X) ³ О.

Если условия имеют несколько другую форму, скажем, g1(Х) = g2(X) или g(X) £ A, то их можно привести к стандартному виду, перенеся в функции и константы в одну из частей равенства или неравенства.

Экстремум, отыскиваемый во всем пространстве, без каких-либо ограничивающих условий, носит название безусловного. Если целевая функция непрерывно дифференцируема, то, необходимое условие безусловного экстремума функции состоит в равенстве нулю всех ее частных производных:

Если же заданы ограничения, то экстремум ищется лишь среди точек, которые удовлетворяют всем ограничениям задачи, так как только такие точки являются допустимыми. В этом случае экстремум носит название условного.

Рассмотрим задачу поиска условного экстремума:

f(X) ®max

при условиях (2)

g1(Х) = 0; g2(Х) = 0, …, gn(Х) = 0,

К-во Просмотров: 609
Бесплатно скачать Реферат: Задача Лагранжа