Реферат: Задачи линейной алгебры Понятие матрицы Виды матриц Операции с матрицами Решение задач на преобразование
Очень легко убедиться в том, что разность С двух матриц А и В может быть получена по правилу С = A + (–1) В.
Произведение матриц или перемножение матриц.
Произведением матрицы A = || a ij || , где ( i = 1, 2, ..., m , j = 1, 2, ..., n ) имеющей порядки, соответственно равные т и n , на матрицу В = || b ij || , где ( i = 1, 2, ..., n , j =1, 2, ..., р), имеющую порядки, соответственно равные n и р, называется матрица С = || c ij || (і =1,2, ..., m ; j = 1, 2, ...., р) , имеющая порядки, соответственно равные т и р элементы которой определя-ются по формуле:
где(i = 1, 2, ..., m, j = 1, 2, ..., p) (1.4)
Для обозначения произведения матрицыі А на матрицу В используют запись С = А × В . Операция составления произведения матрицы А на матрицу В называется перемножением этих матриц.
Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу В, необходимо, чтобы число столбцов матрицы А было равно числу строк матрицы В.
Формула (1.4) представляет собой правило составления элементов матрицы С, являющейся произведением матрицы А на матрицу В. Это правило можно сформулировать и словесно: элемент ci j стоящий на пвресечении і-й строки и j -го столбца матрицьі С = А В, равен сумме попарных произведений соответствующих элементов і-й строки матрицы А и j -го столбца матрицы В.
В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка.
× =
Из формулы (1.4) вытекают следующие свойства произведения матрицы А на матри-цу В:
1) сочетательное свойство: ( А В ) С = А ( В С );
2) распределительное относительно суммы матриц свойство:
( A + B ) С = А С + В С или A ( В + С ) = A В + А С.
Вопрос о перестановочном (переместительном) свойстве произведения матрицы A на матрицу В имеет смысл ставить лишь для квадратных матриц A и В одинакового порядка.
Приведем важные частные случаи матриц, для которых справедливо и переста-новочное свойство. Две матрицы для произведения которых справедливо перестановочное свойство, принято називать коммутирующими.
Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Каждая диа-гональная матрица порядка п имеет вид
D = (1.5)
где d 1 , d 2 , … , dn —какие угодно числа. Легко видеть, что если все эти числа равны между собой, т. е. d 1 = d 2 = … = dn то для любой квадратной матрицы А порядка п справедливо равенство А D = D А.
Среди всех диагональных матриц (1.5) с совпадающими элементами d 1 = d 2 = … = dn = = d особо важную роль играют две матрицы. Первая из этих матриц получается при d = 1, называется единичной матрицей n -го порядка и обозначается символом Е. Вторая матрица получается при d = 0 , называется нулевой матрицей n -го порядка и обозначается символом O . Таким образом,
E = O =
В силу доказанного выше А Е = Е А и А О = О А. Более того, легко показать, что
А Е = Е А = А, А О = О А = 0. (1.6)
Первая из формул (1.6) характеризует особую роль единичной матрицы Е, аналогичную той роли, которую играет число 1 при перемножений вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул (1.7), но и элементарно проверяемое равенство
А + 0 = 0 + А = А.
В заключение заметим, что понятие нулевой матрицы можно вводить и для неквадрат-ных матриц (нулевой называют любую матрицу, все элементы которой равныї нулю).
Блочные матрицы
Предположим, что некоторая матрица A = || a ij || при помощи горизонтальных и вертикальных прямых разбита на отдельные прямоугольные клетки, каждая из которых представляет собой матрицу меньших размеров и называется блоком исходной матрицы. В таком случае возникает возможность рассмотрения исходной матрицы А как некоторой новой (так называемой б л о ч н о й) матрицыі А = || A a b || , элементами которой служат указанные блоки. Указанные элементы мы обозначаем большой латинской буквой, чтобы подчеркнуть, что они являются, вообще говоря, матрицами, а не числами и (как обычные числовые элементы) снабжаем двумя индексами, первый из которых указывает номер «блочной» строки, а второй — номер «блочного» столбца.
Например, матрицу
можно рассматривать как блочную матрицу
элементами которой служат следующие блоки:
Замечательным является тот факт, что основные операции с блочными матрицами совершаются по тем же правилам, по которым они совершаются с обычными числовыми матрицами, только в роли элементов выступают блоки.
Понятие определителя.
Рассмотрим произвольную квадратную матрицу любого порядка п:
A = (1.7)
С каждой такой матрицей свяжем вполне определенную численную характеристику, называемую определителем, соответствующим этой матрице.
Если порядок n матрицы (1.7) равен единице, то эта матрица состоит из одного элемен-та а i j определителем первого порядка соответствующим такой матрице, мы назовем величину этого элемента.
Если далее порядок п матрицы (1.7) равен двум, т. е. если эта матрица имеет вид
A = (1.8)
то определителем второго порядка, соответствующим такой матрице, назовем число, равное а11 а22 — а12 а21 и обозначаемое одним из символов: