Реферат: Задачи Пятого Турнира Юных Математиков
Настоящий реферат рассматривает решения задач некоторых задач отборочного этапа Пятого Всеукраинского турнира юных математиков (проводившегося г. Сумы). В кратком условии участия было отмечено, что «предлагаемые задачи достаточно сложны и необязательно должны быть решены полностью. Оцениваться будут и отдельные продвижения и разбор частных случаев. В некоторых случаях можно решить аналогичную или более простую задачу». Данный реферат имеет несколько не доведенных до конца задач, либо решенных частично. Также приведены некоторые задач финального тура.
«Геометрические миниатюры»
Условие: Зафиксируем на плоскости АВС и обозначим через SL , SM , SK площади треугольников, вершинами которых есть, соответственно, основания биссектрис, медиан и точек касания вписанной окружности. Доказать, что.
Решение
Решение задачи разобъем на четыре этапа:
1. Докажем, что
2. Докажем, что
3. Докажем, что
4. Из этапов (2) и (3) ясно, что , поэтому докажем, что
Этап 1 : Найдем отношение площади треугольника, вершинами которого являются точки касания вписанной окружности, к площади данного треугольника АВС.
Пусть окружность касается сторон АВ, ВС и АС соответственно в точках P, S и Q. Обозначим отрезки AP, CQ и BS как x, y и z соответственно. Тогда из «отрезки касательных, проведенных из одной точки равны», следует, что AC = AQ = x, CQ = CS = y, BS = BP = z.
Составим и решим систему.
Найдем отношение площади PSQ к площади АВС через разность площадей S PSQ = S АВС – (S APQ + S CQS + S BPS).
Аналогично,
и
Тогда из S PSQ = S АВС – (S APQ + S CQS + S BPS) Þ
Подставим значения
Раскрыв скобки, выражение можно записать как
Длины сторон треугольника всегда положительны, значит используем неравенство Коши: . Аналогично, для трех чисел:
Подставим неравенства в числители дробей
.
Итак, отношение площади треугольника PSQ (по условию - Sk ) , вершинами которого являются точки касания вписанной окружности, к площади данного треугольника АВС: .
Этап 2 : Найдем отношение площади треугольника, вершины которого – основания биссектрис данного треугольника, к площади данного треугольника АВС.
Пусть АН, BG, CF – биссектрисы АВС, тогда FGH – искомый треугольник. Найдем отношение площадей данного треугольника и FGH.
Обозначим AF = x, BH = y, CG = z. По свойству биссектрис («биссектриса делит сторону треугольника на отрезки, пропорциональные двум другим сторонам»), тогда
Значит,
--> ЧИТАТЬ ПОЛНОСТЬЮ <--