Реферат: Задачи Пятого Турнира Юных Математиков
Рассмотрим производные P(x):
Далее замечаем, что . Рассмотрим это число:
1. n = 2k..
4k2 (2k-1) – это число четное.
2. n = 2k+1.
2k*(2k+1)2 – также число четное.
Отсюда следует, что- число четное при любых допустимых значениях n. Значит,
, как сумма четных чисел, число четное.
Введем некоторую функцию F(x).
Рассмотрим возможные случаи для х:
1. х – число четное
- число нечетное,
- число четное ÞF(x) – нечетное.
Значит, -нечетное число, ЧТД.
2. х – число нечетное
a. n – нечетное
- число четное,
- при четном х – четное, значит сумма четна ÞF(x) – четное.
b. n – четное
- число нечетное,
- при четном х – четное, значит сумма нечетна ÞF(x) – четное.
Значит, при любом нечетном х, всегда F(x) будет четной при любом (четном/нечетном) значении nÞ
- четное ЧТД
В результате рассмотренных выше случаев, выводим, что для нечетных - число четное, а для четных - число нечетное.
ЧТД.
Необычное уравнение
Условие: Для m натуральных через P(m), обозначается произведение всех цифр его десятичной записи, а через S(m) – их сумма. Найти количество k(n) решений уравнения
при n = 2002. Исследуйте величину k(n) решений уравнения.
Решение
Рассмотрим различные случаи числа x.
Пусть в записи х есть ноль, тогда P(x) = 0, значит
Пусть S(x)=y, S(x) = n и в записи числа есть ноль, тогда
Значит, P(S(x)) = P(y) = 0, т.к. число содержит ноль.
S(S(x))=S(y)=n. Имеется бесконечно много решений.
Т.е. для решения данного уравнения подходят числа, S(S(x)) которых равна n.
Т.к. решений бесконечно много, то имеем множество решений для любых случаев.
Идем от обратного: S(y)=nгде, a+b+c+…+f = n, т.е. от перестановки цифр сумма не меняется.
При n = 2002, S(x) = 4, P(S(x)) = 4, S(S(X)) = 4 – .
Рассмотрев решения для данного случая, убеждаемся, что n можно подобрать относительно х или наоборот.
Задание 6 Финального Тура
Найти все функции , для которых выполняется
Решение
Пусть х = 1.
. Заменим f(y) на а, имеем:
. (*)
Проверим полученную функцию.
y = 1, тогда
Теперь подставим в исходную функцию.
Значит, одно из возможных значений функции - .
Математический Анализ
Условие: Рассматриваются различные непрерывно дифференцируемые функции (это значит, что для произвольного , существует ), причем функция g непрерывна на сегменте [0;1]; под произодными функции f в конечных точках сегмента [0;1] считаются конечные производные соответственно), для которых f(0)=f(1)=0 и . Охарактеризовать множество всех точек, координатной плоскости xOy, через которые могут проходить графики всех функций.
Решение
Используем неравенство Коши-Буняковского для определенного интеграла, но, прежде, распишем определенный интеграл:
Распишем, также, формулу Ньютона-Лейбница:
.
Итак,
Значит .
Значит, .
Тогда, .
, т.к. (по условию).
Рассмотрим два случая:
1. y2 = x – x2 (точка лежит на контуре)
Т.е. графиком данной функции будет произвольная кривая, в которую вписан угол (угол OMK = 900 )
ПРОТИВОРЕЧИЕ !!!
2.
Т.е. всегда можно построить гладкую кривую, проходящую через точку Х.
Бесконечные Биномиальные Коэффициенты
Условие: упростить выражение .
Решение
Отметим, что если n – четное, что количество членов ряда нечетно, а если n – нечетно, то их количество четно.
Рассмотрим четные и нечетные n.
1. n = 2k + 1 – нечетное
Тогда, ряд будет иметь вид:
.
Зная, что , упростим этот ряд.
.
Видим, что равноудаленные от концов ряда члены сокращаются, и, т.к. количество их четно, следовательно сумма ряда рана нулю.
, при n = 2k + 1.
2. n = 2k
Этот случай не был решен до конца, но в результате расчетов первых четных чисел была выведена и проверена, однако не доказана, формула
, где n – четное.
Работа Гончаренко Никиты,
Г. Краматорск, ОШ#35