Реферат: Защита информации цифровая подпись
1.2. Алгоритм ЭльГамаля
1.2.1. Общие сведения
Криптографы со своей стороны вели поиски более эффективных систем открытого шифрования и в 1985 году Т.Эль-Гамаль (США) предложил следующую схему на основе возведения в степень по модулю большого простого числа P .
Задается большое простое число P и целое число A , 1 < A < P . Сообщения представляются целыми числами M из интервала 1 < M < P .
1.2.2. Шифрование сообщений
Протокол передачи сообщения M выглядит следующим образом.
абоненты знают числа A и P ;
абоненты генерируют независимо друг от друга случайные числа:
Ka, Kb
удовлетворяющих условию:
1 < K < P
получатель вычисляет и передаёт отправителю число B, определяемое последовательностью:
В = A Kb mоd(P)
отправитель шифрует сообщение M и отправляет полученную последовательность получателю
C = M * B Ka mоd(P)
получатель расшифровывает полученное сообщение
D = ( A Ka ) -Kb mоd(P)
M = C * D mоd(P)
В этой системе открытого шифрования та же степень защиты, что для алгоритма RSA с модулем N из 200 знаков, достигается уже при модуле P из 150 знаков. Это позволяет в 5-7 раз увеличить скорость обработки информации. Однако, в таком варианте открытого шифрования нет подтверждения подлинности сообщений.
1.2.3. Подтверждение подлинности отправителя
Для того, чтобы обеспечить при открытом шифровании по модулю простого числа P также и процедуру подтверждения подлинности отправителя Т.ЭльГамаль предложил следующий протокол передачи подписанного сообщения M :
абоненты знают числа A и P ;
отправитель генерирует случайное число и хранит его в секрете:
Ka
удовлетворяющее условию:
1 < Ka < P
вычисляет и передаёт получателю число B, определяемое последователньостью:
В = A Ka mоd(P)
Для сообщения M (1 < M < P ):
выбирает случайное число L (1 < L < P ) , удовлетворяющее условию