Реферат: Зонная модель твердого тела Уравнение Шредингера для кристалла
Для водорода M=1840m. Из-за разницы масс будет и разница в скоростях теплового движения ядер и электронов. Ядра можно считать неподвижными по сравнению с электронами. Таким образом, движение электронов и ядер можно считать независимым, проходящим без обмена энергией между электронной и ядерной подсистемами частиц. В этом и состоит смысл адиобатического приближения (А.И. Ансельм “Введение в теорию полупроводников”, Физмат. изд. 1963 – в этой книге можно найти много интересного о методах решения уравнения Шредингера для кристалла).
3. Третье допущение называют одноэлектронным приближением. Рассмотрим его более подробно в следующем параграфе.
Таким образом, в основе зонной теории, приводящей к зонной картине электронного энергетического спектра твёрдого тела, лежат следующие главные приближения:
1. Твёрдое тело представляет собой идеально переодический кристалл.
2. Равновесные положения узлов кристаллической решётки фиксированы, т.е. ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы, вводятся в последствии как возмущения электронного энергетического спектра.
3. Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усреднённым переодическим полем.
4. Одноэлектронное описание многоэлектронных систем.
5. Идея одноэлектронного приближения ведёт своё начало с доквантово-механической – боровской – теории сложных атомов. Эта модель основана на допущении, что действие на данный электрон всех ядер и всех остальных электронов системы приближённо можно заменить действием некоторого усреднённого “эффективного” поля, потенциальная энергия электрона в котором – так называемый “эффективный одноэлектронный потенциал”
(1)
зависит только от координат этого электрона (x,y,z). Таким путём исследование различных многоэлектронных систем сводится к исследованию движения одного электрона в полях с различными потенциалами.
В дальнейшем нас будут интересовать не любые состояния электрона в поле (1), а лишь так называемые стационарные состояния. Таким состояниям в боровской модели атома соответствовали устойчивые орбиты электронов. В квантовой механике боровские орбиты для стационарных состояний электрона заменяются определёнными во всём трёхмерном пространстве одноэлектронными волновыми функциями,
(2)
которые называют также орбиталями.
Стационарным состояниям соответствуют определённые энергетические уровни. Таким образом последовательности одноэлектронных орбиталей для стационарных состояний электрона в поле (1)
… (3)
отвечает последовательность одноэлектронных уровней
… (4)
или одноэлектронный энергетический спектр системы. Может случиться, что нескольким функциям (3) соответствует один и тот же энергетический уровень. Такой уровень называется вырожденным, а число разных функций, соответствующих этому уровню называют кратностью вырождения уровня.
Ψ1 --> E1 E1 - вырожденный уровень
Ψ2 --> E1 2 кратность вырождения
Вышесказанного вполне достаточно, чтобы понять чем занимаются почти все специалисты по электронной структуре кристаллов. Они вычисляются для разных систем орбитами (3) и уровни (4), поскольку в в одноэлектронном приближении наборы (3) и (4) исчерпывают все, что можно сказать об электронном строении и электронных свойствах любой системы.
Действительно, система из N электронов описывается в одноэлектронной модели просто как совокупность частиц, каждая из которых находится на определенной орбитали (3). При этом стремление к минимальной энергии заставляет электроны занимать возможно более низкие уровни, однако в силу принципа Паули на каждой орбитали должно находиться не более двух электронов (в этом случае они имеют противоположные спины). Тогда оптические свойства системы определяются одноэлектронными переходами из одного состояния ( Ψί ) в другое (Ψj ), а энергия , необходимая для отрыва электрона с некоторой орбитали Ψj – так называемый «орбитальный потенциал ионизации», - будет равна энергии соответствующего одноэлектронного уровня
Eί, взятый с обратным знаком. В то время как схема уровней (4) дает информацию об оптических свойствах, а также об электропроводности кристаллов, вид орбиталей позволяет судить о распределении электронной плотности в системе.
Это обстоятельство связанно с физическим смыслом волновой функции. Квадрат модуля волновой функции в некоторой точке пространства пропорционален вероятности нахождения электрона в этой точке пространства. Если взять, как это делают обычно, орбитали (3) нормированными т.е. :
|Ψ|2dV=1
где интеграл взят по всему пространству, то величина |Ψ|2 для каждой из орбиталей даст распределение вероятностей для электрона на соответствующей орбитали.
Результирующая электронная плотность для всей системы определяется выражением
ρ(r)= 2Σ'|Ψί |2 +Σ''|Ψj |2