Шпаргалка: Билеты по геометрии

Две плоскости называются параллельными, если они не пересекаются.

Теорема 16.4: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Доказательство : пусть a и b - данные плоскости, а1 и а2 - прямые в плоскости a , пересекающиеся в точке А , в1 и в2 - соответственно параллельные им прямые в плоскости b . Допустим, что плоскости a и b не параллельны, т.е. пересекаются по некоторой прямой с . По теореме 16.3 прямые а1 и а2 , как параллельные прямым в1 и в2 , параллельны плоскости b , и поэтому они не пересекают лежащую в этой плоскости прямую с . Таким образом, в плоскостиa через точку А проходят две прямые (а1 и а2 ), параллельные прямой с . Но это невозможно по аксиоме параллельных. Мы пришли к противоречию ЧТД.

Вывод формулы объема пирамиды.

Билет №5.

Теорема об отрезках параллельных прямых, заключенных между двумя параллельными плоскостями.

Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны. Действительно, согласно определению параллельные прямые - это прямые, которые лежат в одной плоскости и не пересекаются. Наши прямые лежат в одной плоскости - секущей плоскости. Они не пересекаются, так как не пересекаются содержащие их параллельные плоскости. Значит, прямые параллельны. ЧТД.

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны . Действительно, пусть a и b - параллельные плоскости, а и в - пересекающие их параллельные прямые, А1 , А2 ,и В1 , В2 - точки пересечения прямых с плоскостями (см рисунок). Проведем через прямые а и в плоскость. Она пересекает плоскости a и b по параллельным прямым А1 В1 и А2 В2 . Четырехугольник А1 В1 В2 А2 - параллелограмм, т.к. у него противолежащие стороны параллельны. А у параллелограмма противолежащие стороны равны. Значит А1 А21 В2 . ЧТД.

Касательная плоскость - плоскость, проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А.

Теорема 20.5: касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: пусть a - плоскость, касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости a, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ>ОА=R. Следовательно точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку, то касательная прямая тоже имеет с шаром только одну общую точку - точку касания.

Билет №6.

Прямая, перпендикулярная плоскости.

Две прямые называются перпендикулярными, если угол между ними равен 900 . Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.

Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.

Теорема 17.2: если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна данной плоскости.

Доказательство :

Площадь боковой поверхности пирамиды.

Теорема 19.6: боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.

Билет №7.

Теорема о трех перпендикулярах.

Теорема 17.5: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной. И обратно: если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.

Доказательство : пусть АВ - перпендикуляр к плоскости a, АС - наклонная и с - прямая в плоскости a, проходящая через основание С наклонной. Проведем прямую СА1 , параллельную прямой АВ. Она перпендикулярна плоскости a. Проведем через прямые АВ и А1 С плоскость b. Прямая с перпендикулярна прямой СА1 . Если она перпендикулярна прямой СВ, то она перпендикулярна плоскости b, а значит, и прямой АС. Аналогично если прямая с перпендикулярна наклонной СА, то она, будучи перпендикулярна и прямой СА1 , перпендикулярна плоскости b, а значит, и проекции наклонной ВС. ЧТД.

Вывод формулы объема шара.

Билет №8.

Перпендикулярные плоскости.

Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.

Теорема 17.6: если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Доказательство : пусть a - плоскость, в - перпендикулярная ей прямая, b - плоскость, проходящая через прямую в, с- прямая, по которой пересекаются плоскости a и b. Докажем, что плоскости a и b перпендикулярны. Проведем в плоскости a через точку пересечения прямой в с плоскостью a прямую а, перпендикулярную прямой с. Проведем через прямые а и в плоскость g. Она перпендикулярна прямой с, т.к. прямая с перпендикулярна прямым а и в. Т.к. прямые а и в перпендикулярны, то плоскости a и b перпендикулярны. ЧТД.

Призма - многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников.

Прямая призма - боковые ребра призмы перпендикулярны основаниям.

Боковая поверхность призмы (площадь боковой поверхности) - сумма площадей боковых граней.

Теорема 19.1: боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т.е. на длину бокового ребра.

Доказательство : боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

задача о боковой поверхности наклонной призмы: боковая поверхность наклонной призмы равна произведению периметра перпендикулярного сечения и бокового ребра.

Билет №9.

Теорема о двух прямых, перпендикулярных плоскости.

Теорема 17.4: две прямые, перпендикулярные одной и той же плоскости, параллельны.

Доказательство : пусть а и в - две прямые, перпендикулярные плоскости a. Допустим, что прямые а и в не параллельны. Тогда существует некая прямая в1 параллельная а. Выберем на прямой в точку С, не лежащую в плоскости a. Проведем через точку С прямую в1 , параллельную а. Прямая в1 перпендикулярна плоскости a (теорема 17.3). пусть В и В1 - точки пересечения прямых в и в1 с плоскостью a. Тогда прямая ВВ1 перпендикулярна пересекающимся прямым в и в1 . А это невозможно. Мы пришли к противоречию. ЧТД.

Прямоугольный параллелепипед - параллелепипед, у которого основанием является прямоугольник. У прямоугольного параллелепипеда все грани - прямоугольники. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями).

Теорема 19.4: в прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

К-во Просмотров: 406
Бесплатно скачать Шпаргалка: Билеты по геометрии