Шпаргалка: Электрические машины
3–1 Полупроводниковый прибор: Тиристор. Вольтамперная характеристика, разновидности, условное обозначение, применение
Тиристоры
Тиристор (от греч. thyra – дверь) является переключающим прибором. Тиристор – полупроводниковый прибор с четырехслойной p-n-p-n-структурой с тремя последовательными p-n-переходами, характеризующийся двумя устойчивыми состояниями в прямом направлении и запирающими свойствами в обратном направлении. Структура диодного тиристора показана на рисунке 1.
Рис. 1 Структура диодного тиристора
Крайние области структуры зовытся p- и n-эмиттеры, а области, примыкающие к среднему переходу – p- и n-базы. Эмиттерные переходы являются силовыми и называются катодом и анодом. Переход П1 является эмиттерным или катодным, П2 – коллекторным, П3 – эмиттерным или анодным. Структуру тиристора можно представить в виде схемы замещения (рис. 2), состоящей из транзисторов Т1 и Т2 типа n-p-n и p-n-p.
База и коллектор транзистора Т1 соединены соответственно с базой и коллектором транзистора Т2, образуя цепь внутренней положительной обратной связи. Если к аноду тиристора подключить плюс источника питания, а к катоду – минус, то переходы П1 и П3 будут смещены в прямом, а П2 – в обратном направлении. Таким образом напряжение источника питания окажется приложенным к переходу П2 и будет определяться выражением I=Iк0 / [1 – (α1 +α2 )] , где Iк0 – обратный ток перехода П2, α1 и α2 – коэффициенты усиления. Из выражения следует, что ток I зависит от α1 и α2 и резко возрастает, когда их сумма приближается к единице. Коэффициенты α1 +α2 зависят от тока эмиттера, напряжения на коллекторном переходе и ряда других факторов.
Посмотрим на вольтамперную характеристику тиристора.
Рис. 3 Вольтамперная характеристика диодного тиристора
На характеристике участок ОА соответствует выключенному (закрытому) состоянию тиристора. На этом участке через тиристор протекает ток утечки Iзкр и сопротивление тиристора очень велико (порядка мегаом). При повышении напряжения до определенного значения Uвкл (на характеристике точка А) ток через тиристор резко возрастает (скачком). Дифференциальное сопротивление тиристора в точке А равно нулю. На участке AB дифференциальное сопротивление тиристора отрицательное. Этот участок соответствует неустойчивому состоянию тиристора. При включении последовательно с тиристором сопротивления нагрузки рабочая точка смещается на участок BC, соответствующий включенному состоянию тиристора. На этом участке сопротивление тиристора опять положительное. Для того, чтобы поддерживать тиристор в открытом состоянии через него должен протекать ток не менее Iуд . Снижая напряжение на тиристоре, можно уменьшить ток до значения, меньшего Iуд и перевести тиристор в выключенное состояние.
Диодный тиристор чаще называют динистором.
Если к одной из базовых областей прилепить вывод, то получится управляемый переключающий прибор, который зовут триодный тиристор или просто тринистор . Подавая через этот вывод прямое (управляющее) напряжение на переход, работающий в прямом направлении, можно регулировать значение Uвкл . Чем больше ток через управляющий переход, тем меньше Uвкл . Вольтамперная характеристика такого тиристора аналогична ВАХ динистора, только при различных Uвкл (например, при меньших его значениях) точка А (рис. 3) смещается влево, ближе к оси тока. Другими словами, рост тока управляющего электрода приводит к смещению вольтамперной характеристики в сторону меньшего напряжения включения. При достаточно большом токе управляющего электрода, называемом током спрямления, ВАХ триодного тиристора вырождается в ВАХ обычного диода, теряя участок отрицательного сопротивления. Для выключения триодного тиристора необходимо, снижая напряжения на нем, уменьшать ток через тиристор до значения, меньшего, чем Iуд .
Запираемые триодные тиристоры в отличие от обычных тиристоров способны запираться при подаче сигнала отрицательной полярности на управляющий электрод. Структура запираемого тринистора аналогична структуре обычного тринистора.
Симметричные тиристоры (семисторы) имеют пятислойную структуру и обладают отрицательным сопротивлением на прямой и обратной ветвях вольтамперной характеристики. Включают семистор подачей сигналов управления, выключают – снятием разности потенциалов между силовыми электродами или изменением их полярности.
Условное графическое обозначение всяких тиристоров ниже.
Рис. 4 Условное графическое обозначение тиристоров: а) диодный тиристор (динистор); б) диодный симметричный тиристор; в) триодный незапираемый тиристор с управлением по аноду; г) триодный незапираемый тиристор с управлением по катоду; д) запираемый тринистор с управлением по аноду; е) запираемый тринистор с управлением по катоду; ж) триодный симметричный незапираемый тиристор с управлением по аноду
Рис. 5. Типичная схема запуска тиристора
Отключение тиристора
Тиристор перейдет в закрытое состояние, если к управляющему электроду открытого тиристора не приложен никакой сигнал, а его рабочий ток спадет до некоторого значения, называемого током удержания (гипостатическим током).
Отключение тиристора произойдет, в частности, если была разомкнута цепь нагрузки (рис. 6а) или напряжение, приложенное к внешней цепи, поменяло полярность (это случается в конце каждого полупериода переменного напряжения питания).
Рис. 6. Способы отключения тиристора
Когда тиристор работает при постоянном токе, отключение может быть произведено с помощью механического выключателя.
Включенный последовательно с нагрузкой этот ключ используется для отключения рабочей цепи.
Включенный параллельно основным электродам тиристора (рис. 6б) ключ шунтирует анодный ток, и тиристор при этом переходит в закрытое состояние. Некоторые тиристоры повторно включаются после размыкания ключа. Это объясняется тем, что при размыкании ключа заряжается паразитная емкость р-n перехода тиристора, вызывая помехи.
Поэтому предпочитают размещать ключ между управляющим электродом и катодом тиристора (рис. 1.6в), что гарантирует правильное отключение посредством отсечения удерживающего тока. Одновременно смещается в обратном направлении переход р-n, соответствующий диоду D2 из схемы замещения тиристора тремя диодами (рис. 2).
На рис. 6а-д представлены различные варианты схем отключения тиристора, среди них и ранее упоминавшиеся. Другие, как правило, применяются, когда требуется отключать тиристор с помощью дополнительной цепи. В этих случаях механический выключатель можно заменить вспомогательным тиристором или ключевым транзистором, как показано на рис. 7.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--