Шпаргалка: Математический анализ

dz = ¶z/¶x Dx + ¶z/¶y Dy

Док-во: По определению дифференцируемости приращение функции может быть записано в виде:

Dz = ADx+BDy +a при любом Dх и Dу.

Рассмотрим 2 частных случая

1)Dх¹0 Dу = 0

При этом Dz=ADx+a /Dx и перейдем к пределу. Полное приращение функций превращается в частное приращение.

Lim Dxz/Dx = Lim A+a/Dx

Dx®0 Dx®0

¶z/¶x= A+Lim(Dx®0)a/Dx =0 т.к. r=Dх

В результате получаем А=¶z/¶x

2)Dx=0 Dy¹0

При этом аналогичным образом получим, что В=¶z/¶y

Теорема доказана. Как следствие - полный дифференциал дифференцируемой функции определяется по формуле:

dz=¶z/¶x·Dx+¶z/¶y·Dy, если при этом учесть, сто приращение независимых переменных х и у равны их дифференциалам Dx=dx, Dy=dy, то окончательно получим:

dz=¶z/¶x·dx+¶z/¶y·dy

Теорема 2. Достаточное услови дифференцируемости функции.

Если z=f(x,y) имеет в точке р(х,у) непрерывные частные производные, то она дифференцируема в этой точке, т.е. она имеет полный дифференциал.

Полный дифференциал для функций нескольких переменных.

Для функций многих переменный полный дифференциал определяется аналогично, при этом:

u=f(x,y,z,…,t)

du=¶u/¶x·dx+¶u/¶y·dy+¶u/¶z·dz+…+¶u/¶t·dt

Применение полного дифференциала для приближенных вычислений.

Пусть задана функция z=f(x,y) рассмотрим ее полное приращение.

Dz=f(x+Dx,y+Dy) - f(x,y)

При малых Dх и Dу -Dz»dz-

f(x+Dx,y+Dy) - f(x,y) »¶z/x¶·Dx+¶z/¶y·dy®

f(x+Dx,y+Dy)»f(x,y)+¶z/¶x·dx+¶z/¶y·dy — формула для приближенных вычислений.

Эта формула позволяет вычислять приближенное значение функции в точке р1 по известному ее в точке р и значением ее частных производных в точке р. Чем меньше Dх и Dу, тем меньше погрешность.

Дифференцирование сложных функций.

К-во Просмотров: 567
Бесплатно скачать Шпаргалка: Математический анализ