Шпаргалка: Шпаргалка по математике

cos x cos y

Формулы преобр. произв. в сумму

sin x sin y = Ѕ(cos (x-y) - cos (x+y))

cos x cos y = Ѕ(cos (x-y)+ cos (x+y))

sin x cos y = Ѕ(sin (x-y)+ sin (x+y))

Соотнош. между ф-ями

sin x = (2 tg x/2)/(1+tg2 x/2)

cos x = (1-tg2 2/x)/(1+ tg² x/2)

sin2x = (2tgx)/(1+tg2 x)

sin²a = 1/(1+ctg²a) = tg²a/(1+tg²a)

cos²a = 1/(1+tg²a) = ctg²a / (1+ctg²a)

ctg2a = (ctg²a-1)/ 2ctga

sin3a = 3sina -4sin³a = 3cos²asina-sin³a

cos3a = 4cos³a-3 cosa=

= cos³a-3cosasin²a

tg3a = (3tga-tg³a)/(1-3tg²a)

ctg3a = (ctg³a-3ctga)/(3ctg²a-1)

sin a/2 = ±Ö((1-cosa)/2)

cos a/2 = ±Ö((1+cosa)/2)

tga/2 = ±Ö((1-cosa)/(1+cosa))=

sina/(1+cosa)=(1-cosa)/sina

ctga/2 = ±Ö((1+cosa)/(1-cosa))=

sina/(1-cosa)= (1+cosa)/sina

sin(arcsin a) = a

cos( arccos a) = a

tg ( arctg a) = a

ctg ( arcctg a) = a

arcsin (sina) = a ; aÎ [-p/2 ; p/2]

arccos(cos a) = a ; aÎ [0 ; p]

К-во Просмотров: 880
Бесплатно скачать Шпаргалка: Шпаргалка по математике