Шпаргалка: Шпаргалка по Статистике
R=xmax-xmin ,
где xmax – наибольшее значение признака;
xmin – наименьшее значение признака.
Размах вариации не отражает отклонений всех значений признака – это его недостаток. Он исчисляется при контроле качества продукции для определения систематически действующих причин на производственный процесс.
Для измерения отклонения каждой варианты от средней величины в ряду распределения или в группировке применяется среднее линейное отклонение (d).
Среднее линейное отклонение определяется по формулам:
а) для несгруппированных данных (ранжировочного ряда) (простое);
б) для вариационного интервального ряда: (взвешенное).
Среднее линейное отклонение показывает, на сколько в среднем каждое значение признака отклоняется от средней величины. Эта величина всегда именованная и измеряется в тех же величинах, в которых даны статистические показатели.
Среднее линейное отклонение дает обобщенную характеристику степени колеблемости признаков совокупности.
Средние линейные отклонения применяются на практике для анализа состава рабочих, ритмичности производства, равномерности поставок материалов и т.д.
Наибольшее применение в практике статистических работ находит показатель – дисперсия признака или средний квадрат отклонений, или квадрат среднего квадратического отклонения (). Дисперсия – – определяется по формулам:
а) для ранжировочного ряда (несгруппировочных данных): (простая);
б) для интервального ряда: (взвешенная).
Корень квадратный из дисперсии представляет среднее квадратическое отклонение ():; или
а) для ранжировочного ряда: (простое);
б) для вариационного ряда: (взвешенное).
Среднее квадратическое отклонение дает обобщенную характеристику признака совокупности и показывает во сколько раз в среднем колеблется величина признака совокупности. В зарубежной литературе оно называется стандартным отклонением и применяется в различных стандартах.
Среднее квадратическое отклонение по величине всегда больше среднего линейного отклонения. Среднее квадратическое отклонение является мерой надежности средней величины: чем оно меньше, тем точнее средняя арифметическая.
Дисперсия является оценкой одноименного показателя теории вероятности. Сопоставление линейных или среднеквадратических отклонений по признакам совокупности дает возможность определить статистическую однородность совокупности: чем меньше размер, тем совокупность более однородна.
11. Статистическая таблица: элементы, виды, правила оформления.
Статистическая таблица - форма рационального и наглядного изложения цифровых характеристик исследуемых явлений.
Статистическое обобщение информации и представление ее в виде сводных статистических таблиц дает возможность характеризовать размеры, структуру и динамику изучаемых явлений. Часто к статистической таблице дается общий заголовок, в котором указывается содержание таблицы, место и время, к которым относятся приводимые в таблице данные, а также единицы измерения, если они одинаковы для всех приведенных сведений.
Элементы статистической таблицы
Основные элементы статистической таблицы - подлежащее и сказуемое.
Подлежащим таблицы являются единицы статистической совокупности или их группы.
Сказуемое таблицы отражает то, что в ней говорится о подлежащем с помощью цифровых данных.
Статистическая таблица содержит три вида заголовков:
· Общий заголовок отражает содержание всей таблицы с указанием, к какому месту и времени она относится. Он располагается над макетом и является внешним заголовком;