Шпаргалка: Шпаргалка по Статистике

Коэффициент вариации позволяет судить об однородности совокупности:

- < 17% – абсолютно однородная;

- 17–33%% – достаточно однородная;

- 35–40%% – недостаточно однородная;

- 40–60%% – это говорит о большой колеблемости совокупности.

Коэффициент осцилляции – это отношение размаха вариации к средней, в процентах. Отражает относительную колеблемость крайних значений признака вокруг средней. .

Линейный коэффициент вариации характеризует долю усредненного значения абсолютного отклонения от средней величины.

15. Виды дисперсий и правило их сложений.

В зависимости от того, как представлена статистическая совокупность одним элементом или несколькими, различают следующие виды дисперсии:

· общая дисперсия - оценивает колеблемость признака всех единиц совокупности без исключения: .

– средняя в целом по совокупности;

f – частота в целом по совокупности.

Она отражает влияние всех причин и факторов, которые действуют на вариацию.;

· групповая дисперсия (внутригрупповая) -рассчитывает колеблемость признака в каждой отдельной группе и представляет собой средний квадрат отклонений индивидуальных значений признаков от средней по каждой отдельно взятой группе: .

- показывает, что это групповая дисперсия. Групповая дисперсия отражает колеблемость, которая возникает только за счет причин, действующих внутри группы.

· средняя из групповых дисперсия – это среднеарифметическая взвешенная из групповых дисперсий и определяется по формуле

,

где – средняя из групповых дисперсия, fi – объем итоговой группы или число единиц в этой группе. Она характеризует случайную вариацию в каждой группе.

· межгрупповая дисперсия (дисперсия групповых средних) характеризует вариацию результативного признака под влиянием только одного фактора, положенного в равновесие группировки

где – групповые средние (средняя по отдельным группам), – общая средняя, fi – численность отдельной группы.

Между общей дисперсией, средней из групповых дисперсий и межгрупповых дисперсий существует соотношение, которое определяет правило сложения дисперсий: – это правило сложения дисперсий имеет большое значение и позволяет выявить зависимость результатов от определенных факторов.

Практическое применение правила: используется для взаимопроверки правильности расчета обшей дисперсии, на основании этого правила строятся показатели тесноты связи.

16. Суть выборочного метода. Случаи его применения. Основные понятия.

К-во Просмотров: 441
Бесплатно скачать Шпаргалка: Шпаргалка по Статистике