Шпаргалка: Типовые задачи по матанализу

Решение:

Рассмотрим фун-ю у=…. и исследуем ее на промеж при хэ[..;..] на наиб, наимень значения.

1)Д(у)=…

2)Найдем производ фун-и у’=…

3)Д(у’)=….

4)Найдем критич точки у’=0, ……=0

х1=…;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю. Эти точки принадлежат (или нет) нашему промеж […;…].

х1э[…;…]; x2э[…;…].

Найдем значения в кртич точках и на концах отрезка: f(…)=…;f(x1)=…;f(x2)=…;f(…)=…

Наиболь знач фун-я принимает при х=…,а наимень при х=…

Max[…;…] f(x)=……;min[...;…] f(x)=….

Ответ: наиб знач фун-я принимает при х=..,а наимень при х=…

Найти область определения фун-и.

Решение:

Рассмотрим фун-ю f(x)=…

1)Д (f) (т.к. многочлен)

2)Найдем нули функции: f(x)=0, …..=0

х1=…;х2=…-эти точки разбив числовую прямую на промеж в каждом из которых фун-я сохран свой знак в силу непрерывности.

+ х1 - х2 +

На промеж (-беск;х1):f(x)=…>0 и т.д.

Т.к. функция приним все знач больше или равно нулю,то Д(f)=(-беск;х1)$(x2;+беск).

Ответ: Д(f)=(-беск;х1)$(x2;+беск).

Исследовать на монотонность.

Решение:

Рассмотрим фун-ю f(x)=…

1)Д (f)=…..

2)Находим производ f’(x)=….

3)Приравниваем произв к нулю находим критич точки: f’(x)=0, ……=0

х1=…;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю.

Эти точки разбивают числовую прямую на промежутки в каждом из которых производная сохр свой знак в силу непрерывности.

+ x1 - x2 +

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 354
Бесплатно скачать Шпаргалка: Типовые задачи по матанализу