Шпаргалка: Типовые задачи по матанализу
min max
f(x1)=…; f(x2)=….
На промеж (-беск;х1):f(x)=…<0 и т.д.
6) В точке х1=…производ сменила знак с минуса на плюс, значит эта точка минимума. В точке х2=…производная сменила знак с плюса на минус, значит эта точка максимума.
7) Т.к. в точках x1=.., x2=..фун-я определена, то она возростает на промежетке (x1;x2) и убывает на промеж (-беск;х1)$(x2;+беск).
СТРОИШЬ ГРАФИК
Ответ: все полученные значения.
Решить методом интервалов.
Решите нер-во: …><0
Решение:
1)Рассмотрим функцию и решим ее методом интервалов ...><0.
2)Д(у)=…и ОДЗ
3)Находим нули фун-и f(x)=0, …..=0
x1=…,x2=…-эти точки разбивают числовую прямую на промежутки в каждом из которых фун-я сохраняет свой знак в силу непрерывности.
+ x1 - x2 +
4)f(..)=...>0;
f(..)=…<0; f(..)=…>0;
Т.к. фун-я принимает неотриц-е (неполож.) значения на промеж. (-бескон;…),(…,+бескон), то решением нерав-ва будет их объед-е.
Ответ:(-..;…)$(…;+…).
Составить ур-е касат-й в точке х0=..Найдите коор-ты всех точек граф. этой фун-и параль-но найденной касатель.
Решение:
у=f”(x0)(x-x0)+f(x0)-общий вид ур-я касатель.
Рассмотрим фун-ю f(х)=…
1)Д(f)=…..
2)Найдем произв. фун-ии f(х)=…
f’(х)=….
3)Д(f’)=….
4)f’(x0)=…;f(x0)=…След-но ур-е касатель имеет вид: y=f”(x0)(x-x0)+f(x0)
Производная фун-и в точке х0=.., есть угловой коэф-т касатель провед к граф фун-и в точке (х0;f(x0)) т.к. надо найти парал-е касатель, значит угловые коэф-ты долны быть одинаковыми(т.е. равны).
Дополнительно: у=f’(x0)(x-x0)+f(x0) и у=кх+в
Ответ:у=ур-е касатель (х0;f(x0))