Шпаргалка: Высшая математика, интегралы шпаргалка

Равномерная непрерывность

Определение 28.7: Функция называется равномерно непрерывной на множестве , если: . (в отличие от критерия Коши: ).
Пояснение: Пусть: . Тогда: Т.е. функция не является равномерно непрерывной на множестве .

Теорема 28.3: Непрерывная на отрезке функция – равномерно непрерывна на нём.

Классы интегрируемых функций

Теорема 28.4: Непрерывная на отрезке функция – интегрируема на нём.

Теорема 28.5: Монотонная на отрезке функция – интегрируема на нём.

Теорема 28.5: Если функция определена и ограничена на отрезке , и если можно указать конечное число интервалов, покрывающих все точки разрыва этой функции на . Причём общая длина этих интервалов меньше . То - интегрируема на .
Замечание: Очевидно, что если - интегрируема на , а отличается от только в конечном числе точек, то - интегрируема на и .

Существование первообразной

Определение 28.9: Пусть - интегрируема на , , тогда: функция интегрируема на и функция называется интегралом с переменным верхним пределом, аналогично функция - интеграл с переменным нижним пределом.

Теорема 28.6: Если функция - непрерывна на , то у неё существует на первообразная, одна из которых равна: , где .
Замечание 1: Из дифференцируемости функции следует её непрерывность, т.е.
Замечание 2: Поскольку - одна из первообразных , то по определению неопределённого интеграла и теореме о разности первообразных: . Это связь между определённым и неопределённым интегралами

Интегрирование подстановкой

Пусть для вычисления интеграла от непрерывной функции сделана подстановка .

Теорема. Если 1. Функция и ее производная непрерывны при

2. множеством значений функции при является отрезок [a;b]

3. , то =.

Док-во: Пусть F(x) есть первообразная для f(x) на отрезке [a;b]. Тогда по формуле Ньютона-Лейбница =. Т.к. , то является первообразной для функции , . Поэтому по формуле Ньютона-Лейбница имеем

=.

Формула замены переменной в определенном интеграле.

1. при вычислении опред. интег-ла методом подстановки возвращаться к старой переменной не требуется;

2. часто вместо подстановки применяют подстановку t=g(x)

3. не следует забывать менять пределы интегрирования при замене переменных.


Интегрирование заменой переменной .

а). Метод подведения под знак дифференциала

Пусть требуется вычислить интеграл . Предположим, что существуют дифференцируемая функция и функция такие, что подынтегральное выражение может быть записано в виде:

.

Тогда: . Т.е. вычисление интеграла сводится к вычислению интеграла (который может оказаться проще) и последующей подстановке .

Пример: Вычислить .

.

Подстановка: .

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 481
Бесплатно скачать Шпаргалка: Высшая математика, интегралы шпаргалка