Сочинение: Исследование расщепления крахмала под действием a-амилазы слюны
Общеобразовательная средняя школа №5
Исследовательская работа
Тема: «Исследование расщепления крахмала под действием a-амилазы слюны»
Авторы: Учитель химии Новиков В.В.
Ученицы 11а класса
Рогова Екатерина, Белова Юля
Тверь 2004
Содержание
1. Актуальность работы.. 2
2. Цель работы.. 3
3. Литературный обзор. 4
3.1. Крахмал. Строение крахмала. 4
3.2. Общие понятия о ферментах. 9
3.3. Характеристика амилаз. 12
3.4. a-Амилазы.. 13
3.5. Гидролиз крахмала a-амилазами. 14
4. Ход работы.. 16
5. Литература. 18
6. Благодарности. 19
1. Актуальность работы
Амилазы широко используются в пищевой промышленности. Так амилазы используются в хлебопечении и технологиях брожения. Также a-амилаза играет значительную роль в расщеплении крахмала в организме человека. Поэтому понимание действия амилазы важно для оптимизации промышленного производства и изучения обмена веществ в организме человека.
2. Цель работы
Исследовать активность фермента a-амилазы слюны при различных температурах и нахождение оптимальной температуры действия фермента в нейтральной среде.
3. Литературный обзор
3.1. Крахмал. Строение крахмала
Крахмал – один из наиболее распространенных запасных полисахаридов растений. Он интенсивно накапливается в результате фотосинтеза и откладывается в семенах, клубнях и других частях растений. Семена и клубни содержат 40-70% крахмала, другие части растений от 4 до 25%. При кислотном гидролизе крахмал распадается с образованием D - глюкозы, являющейся его структурным элементом, и небольшого количества глюкозо-6 - фосфата, так как все виды крахмала содержат немного (0,02 – 0,16%) фосфора. Установлено, что глюкоза в составе крахмала находится в виде α – D – глюкопиранозы.
Природный крахмал состоит из двух различных фракций, отличающихся по своему строению и свойствам. Примерно 20% крахмала составляет амилоза (от греч. амилон–крахмал). Остальное приходится на вторую фракцию, получившую название амилопектина (от греч. пектос – студнеобразный). Такая терминология отражает некоторые свойства этих двух видов крахмала. Амилопектин с трудом растворяется в горячей воде, причём раствор получается вязкий (крахмальный клейстер) и при охлаждении застывает в студневидную массу. Амилоза же хорошо растворима в тёплой воде и не образует клейстера. Пользуясь этим обстоятельством, амилозу отделяют от амилопектина, многократно извлекая её тёплой водой. С этой же целью используют способность амилозы осаждаться под действием бутилового спирта при насыщении последним горячего раствора, содержащего смесь амилозы и амилопектина. Применяют и хроматографические методы. Например, после пропускания диспергированного крахмала через колонку с фосфатом кальция и последующего промывания фосфатным буфером амилоза элюируется, а амилопектин остаётся на сорбенте.
Молекулярная масса амилозы и амилопектина различна: у не деградировавшиз в процессе выделения препаратов амилозы она составляет от 100000 до 400000, а у амилопектина превышает, как правило 20*106. Соответственно коэффициент полконденсации α-D-глюкопиранозы в молекулах амилозы оценивается в несколько сотен, а у амилопектина – в несколько десятков и даже сотен тысяч.
Различна и химическая структура амилозы и амилопектина. Молекулы первой, как правило, строго линейны. В них остатки a-D-глюкопиранозы связаны друг с другом исключительно a-1,4-глюкозидными связями, т.е. кислородные мостики возникают за счёт гликозидного гидроксила 1-го атома одной молекулы a-D-глюкопиранозы и спиртового гидроксила при 4-м атоме другой:
В соответствии с таким строением амилозу можно характеризовать как a-1,4-глюкан. Таким образом, амилоза представляет линейный полисахарид, молекулы которого имеют нитевидную структуру.
Современные данные о строении амилозы основаны на предположении, что остатки a-D-глюкопиранозы в её составе в силу некоторых обстоятельств имеет конформацию типа лодки. В этом случае структурная формула амилозы принимает следующий вид:
Лодкообразная конформация a-D - глюкопиранозных остатков в молекуле амилозы способствует спирализации полигликозидной цепи. При этом один виток спирали включает 6-7 остатков глюкозы. При длине каждого остатка глюкозы, равной 0,5 нм, возникает спираль диаметром 1 нм. Допускают, что молекулы амилозы, как и других линейных полисахаридов, могут на том или ином протяжении взаимодействовать друг с другом, образуя вторичные структуры бисприрального типа с взаимно закрученными полисахаридными цепями.
Амилопектин имеет сферические молекулы с радиусом вращения от 82 до 255 нм. Их сферическая форма обеспечивается тем, что молекула составлена из множества (несколько сотен) коротких полигликозидных цепочек, каждая из которых в среднем содержит 20 остатков a-D - глюкопиранозы. В пределах каждой короткой цепи глюкозные остатки соединены a-1,4 гликозидными связями. Друг с другом цепи соединяются посредством a-1,6 гликозидных связей. Строение этого разветлённого участка молекулы амилопектина таково:
Общая структура молекулы амилопектина в соответствии с ранними данными показана на рис. На этом же рисунке приведена более современная модель амилопектина, выведенная на основании детального исследования продуктов ферментативного гидролиза и рентгенографического анализа этого полисахарида. Она получила название гроздевидной, так как по расположению в ней полигликозидных звеньев весьма напоминает гроздь винограда. Степень полимеризации остатков a-D-глюкозы в звеньях, обозначенных утолщёнными линиями, достигает 45, тонкими – 15. Протяжённость каждой псевдокристаллической области составляет 6 нм, аморфой – втрое меньшую величину
--> ЧИТАТЬ ПОЛНОСТЬЮ <--