Статья: Дифференциальные уравнения неустановившегося движения воздуха по рудничным воздуховодам

(10)

После взаимного уничтожения одинаковых слагаемых, стоящих в левой и в правой частях равенства (10), получим выражение дифференциала скорости воздуха, т. е.

(11)

Подставив выражение (9) в формулу (11), получим значение дифференциала скорости на бесконечно малой длине воздуховода:

(12)

В уравнении неразрывности (9) знак минус указывает на то, что на бесконечно малом участке d x происходит уменьшение скорости при изменении плотности воздуха. А это для плотных воздуховодов обозначает, что уравнение (9) выражает собой и сжатие воздуха.

Преобразуем дифференциальное уравнение (9). Известно, что скорость звука с (м/с) при изотермическом процессе распространения возмущения в воздухе имеет выражение [4]:

(13)

где р – давление (Па), ρ – плотность воздуха (кг/м3).

Частный дифференциал плотности воздуха, исходя из выражения (13), подставим в формулу (9). В результате получим уравнение неразрывности в следующем виде:

(14)

Это и есть второе дифференциальное уравнение неустановившегося движения воздуха по рудничным воздуховодам.

Обычно уравнения (7) и (14) записывают в виде одной системы уравнений. В результате получается система дифференциальных уравнений в частных производных второго порядка, описывающая переходные процессы в воздушных потоках рудничных воздуховодов, а именно:

(15)

Такая же система уравнений, но другим путем была получена И.А. Чарным [6]. Эта система дифференциальных уравнений является нелинейной, так как в первом уравнении зависимая переменная – скорость – стоит в квадрате. Решение такой системы дифференциальных уравнений затруднительно. Поэтому И.А. Чарный [6] предложил линеаризовать в первом уравнении первое слагаемое в правой части равенства (15). Он предложил считать постоянным среднее значение по длине воздуховода и времени следующего коэффициента:

(16)

где 2а – линеаризованный коэффициент аэродинамического сопротивления (1/с) [6], λ – коэффициент трения воздуха (б/р), v – средняя по сечению и по времени скорость движения воздуха в данном поперечном сечении воздуховода во время переходного процесса (м/с), Rг – гидравлический радиус воздуховода (м).

При движении воздуха с квадратичным законом сопротивления строят график – квадратичную параболу в функции скорости v (рис.2), на котором выбирают участок кривой, ограниченный предельными скоростями движения воздуха во время переходного процесса.


Рис.2. Графики для определения линеаризованного коэффициента аэродинамического сопротивления (2а). v1 – наименьшая и v2 – наибольшая скорости движения воздуха во время переходного процесса.

Квадратичная парабола описывается формулой в соответствии с первым уравнением и первым слагаемым правой части равенства системы уравнений (15), т. е.

(17)

Затем из начала координат проводят прямую линию тоже в функции скорости v так, чтобы она пересеклась с параболой в промежутке между предельными скоростями переходного процесса v1 и v2 (см. рис.2). При этом площади, ограниченные между параболой и прямой с обеих сторон от пересечения в промежутке между граничными скоростями, должны быть равны. Эта прямая линия представляет собой линеаризованный закон сопротивления движению воздуха, эквивалентный квадратичному закону. Уравнение этой прямой линии имеет вид:

(18)

где 2а – линеаризованный коэффициент аэродинамического сопротивления [формула (16)], но его численное значение пока не известно.

Значение этого коэффициента определим из условия равенства площадей, заключенных между вертикальными линиями граничных скоростей, между осью абсцисс и параболой (площадь, ограниченная контуром aABba) и между осью абсцисс и прямой линией (площадь, ограниченная контуром aαβba). Площадь, ограниченная параболой (площадь, ограниченная контуром аАВba , рис.2), равна:

(19)

Площадь, ограниченная прямой линией (площадь, ограниченная контуром aαβba , рис.2), равна:

(20)

По условию площади, описываемые формулами (19) и (20), равны. Приравняем их. Разность квадратов величин и разность кубов величин разложим на множители. Затем одинаковые множители слева и справа от равенства сократим. Проделаем эти выкладки.

К-во Просмотров: 284
Бесплатно скачать Статья: Дифференциальные уравнения неустановившегося движения воздуха по рудничным воздуховодам