Статья: Дифференциальные уравнения неустановившегося движения воздуха по рудничным воздуховодам

Произведен вывод нелинейной системы дифференциальных уравнений в частных производных для расчета давления и скорости движения воздуха по воздуховодам при его нестационарном квадратичном движении. При этом использованы: формула Дарси-Вейсбаха – формула потерь давления на трение; второй закон Ньютона для определения инерционных потерь давления и уравнение неразрывности движения потока воздуха. Приведен пример расчета неустановившегося расхода воздуха в коротком воздуховоде при подаче на его вход постоянного давления.

Переходные процессы движения воздуха в трубопроводах могут продолжаться относительно долго и существенно влиять на работу вентиляторной установки, особенно на работу электродвигателя. Особое значение имеют переходные процессы воздушного потока в горных выработках и трубопроводах, в которых время распространения звука от одного конца к другому значительно больше времени пуска двигателя вентилятора или времени открытия задвижки.

Задача настоящих исследований состоит в том, чтобы дать методику получения дифференциальных уравнений движения воздуха по трубопроводам, удобных для практического их решения.

Впервые связь между потерями напора на трение и средней по сечению воздуховода скоростью (или расходом воздуха) выявлена в XVIII в., когда была получена формула Дарси – Вейсбаха [1, стр.170; 2, стр.130].

Потеря давления на трение при движении воздуха по трубам по формуле Дарси – Вейсбаха имеет вид:

(1)

где ∆ – обозначение разности; р – давление (Па = Н/м2) [3]; – коэффициент гидродинамического трения (б/р) [1]; D – внутренний диаметр трубы (м); v – средняя по поперечному сечению воздухопровода скорость движения воздуха (м/с); – объемный вес воздуха (Н/м3) при давлении окружающей среды [1, 3]; – ускорение силы тяжести (м/с2); ∆х – длина участка воздуховода (м).

Для преобразования уравнения (1) учтем нижеследующее. Объемный вес воздуха (удельный вес) (Н/м3) выражается формулой [3]:

(2)

где – плотность воздуха (кг/м3) при давлении окружающей среды [3]. Соотношение между гидравлическим радиусом Rг и диаметром D круглой трубы имеет вид:

(3)

где S – площадь поперечного сечения воздухопровода (потока) (м2),

χ – смоченный периметр воздуховода (м).


???. 1. ?????????????? ????? ???????????. ??????? ??????????

давлений (а) и скоростей (б) на бесконечно малом участке

воздуховода длиной d x.

В формуле (1) устремим длину трубы ∆х к бесконечно малой величине dx. Тогда получим дифференциал потерь давления. Кроме этого, подставим в это выражение значения формул (2) и (3). В результате получим выражение потерь давления на трение на бесконечно малом участке воздуховода (рис.1,а), т. е.

(4)

Здесь давление р(x,t) и скорость v(x,t) являются функциями двух переменных – расстояния от начала воздуховода до рассматриваемого сечения его (х) и времени от начала переходных процессов до рассматриваемого момента (t).

При неустановившемся движении воздуха в воздуховодах существуют и инерционные потери давления. По второму закону Ньютона [4] инерционные потери давления на бесконечно малой длине воздуховода выражаются следующим дифференциалом (рис.1,а):

(5)

В соответствии с условием равновесия давлений на границах бесконечно малого участка воздуховода dx (рис.1,а) можно записать

(6)

Одинаковые слагаемые в левой и в правой частях равенства (6) взаимно уничтожаются. Подставив в выражение (6) формулы (4) и (5), после сокращения на d x получим первое дифференциальное уравнение для расчета неустановившегося движения воздуха по воздуховодам, выраженное через давление и скорость движения воздуха, а именно:

(7)

В систему дифференциальных уравнений расчета неустановившихся процессов при движении воздуха по трубам кроме уравнения (7) должно входить и уравнение неразрывности потока. Развернутое дифференциальное уравнение неразрывности [4, 5] при движении воздуха по трубам имеет следующий вид:

(8)

В своих исследованиях И.А.Чарный [6] показал, что для капельной жидкости последнее слагаемое левой части равенства уравнения (8) представляет собой величину второго порядка малости. Поэтому этим слагаемым следует пренебречь. Кроме того, И.А.Чарный доказал, что воздух по своим аэродинамическим свойствам относится к капельным жидкостям. С этим перекликается и заключение Л.И. Седова [5] о том, что есть физические характеристики, остающиеся во время движения постоянными в индивидуальном объеме сплошной среды.

В свете вышесказанного дифференциальное уравнение неразрывности потока воздуха в вентиляционных воздуховодах имеет следующий вид:

(9)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 283
Бесплатно скачать Статья: Дифференциальные уравнения неустановившегося движения воздуха по рудничным воздуховодам