Статья: Дифференциальные уравнения неустановившегося движения воздуха по рудничным воздуховодам
Отсюда определим линеаризованный коэффициент аэродинамического сопротивления, эквивалентный аэродинамическому сопротивлению при квадратичном законе движения воздуха, а именно:
(22)
Формулы (16) и (22) являются эквивалентными. Из сравнения этих формул следует среднее интегральное значение скорости, определяющей линейный режим аэродинамического сопротивления, при изменении этой скорости от v1 до v2, то есть
(23)
Подставим значение 2а из формул (16) и (22) в систему уравнений (15). В результате получим линеаризированную систему дифференциальных уравнений, описывающую переходные процессы воздуха в воздуховодах и выраженную через давление и скорость движения воздуха, т. е.
(24)
Для анализа переходных процессов при движении воздуха в воздуховодах систему уравнений (24) следует выразить через расход воздуха в данном поперечном сечении S. Для этого каждое слагаемое этой системы уравнений, содержащее скорость движения воздуха, умножим и разделим на площадь поперечного воздуховода. Тогда произведение скорости движения воздуха на площадь поперечного сечения воздуховода будет представлять собой расход воздуха (м3/с) в данном поперечном сечении, т. е.
(25)
При этом система уравнений (24) тогда будет представлять собой линеаризованную систему уравнений для расчета переходных процессов воздуха в воздуховодах при квадратичном законе трения воздуха, т. е.
(26)
Эта система уравнений была получена И.А. Чарным в его книге [6], но только другим путем.
Первое уравнение системы (26) учитывает как аэродинамическое сопротивление движению воздуха, так и его инерционные свойства. Каждый член этого уравнения представляет собой силу, приходящуюся на один кубометр движущегося воздуха (Н/м3).
Второе уравнение системы (26) учитывает сжимаемость воздуха; коэффициент ρс2, имеющий размерность Н/м2, характеризует упругие свойства воздуха и представляет собой его модуль упругости.
Каждый коэффициент системы (26), стоящий перед зависимой переменной, имеет свой физический смысл и свое название в технической литературе, а именно:
2аρ/S – линеаризованное аэродинамическое сопротивление, приходящееся на единицу длины воздуховода, численно равное давлению, необходимому для создания единицы скорости одному кубометру воздуха в стационарном режиме, ;
ρ/S – коэффициент, учитывающий инерционность воздуха, численно равный давлению, необходимому для создания единицы ускорения одному кубометру воздуха, , иногда этот коэффициент называют акустической массой или инерционностью [7];
S/(ρc2) – коэффициент, учитывающий сжимаемость воздуха, численно равный количеству воздуха, которое необходимо сжать для создания единицы давления на одном метре длины воздуховода, , иногда этот коэффициент называют акустической гибкостью или податливостью [7].
Выведенную систему дифференциальных уравнений (26) можно преобразовать в одно уравнение, исключив одну из зависимых переменных (расход или давление). В результате получится дифференциальное уравнение в частных производных второго порядка. Такие дифференциальные уравнения называются волновыми. В результате их решения получается, что во время переходного процесса при распространении волны расход воздуха является разным вдоль воздуховода в один и тот же момент времени. В этом случае воздуховод следует называть длинным воздуховодом. Но возможно существование воздуховода небольшой протяженности, при которой расход воздуха по длине воздуховода остается практически одним и тем же в один и тот же момент времени. Воздуховоды такой протяженности следует называть короткими воздуховодами.
Поскольку расход воздуха в коротких воздуховодах вдоль его длины не меняется, то производная от расхода воздуха по расстоянию вдоль оси воздуховода равна нулю. А это свидетельствует о том, что второе уравнение системы (26), обозначающее сжимаемость воздуха, исчезает. Воздух в таких воздуховодах становится как бы не сжимаемым. Следовательно, в коротких воздуховодах переходный процесс движения воздуха описывается лишь одним первым уравнением системы (26).
Пример. Рассчитаем переходный процесс движения воздуха в коротком трубопроводе. Для этого используем только первое уравнение системы (26), так как второе уравнение для коротких воздуховодов обращается в нуль. При этом расход воздуха не зависит от длины потому, что из-за несжимаемости воздуха в коротких воздуховодах он по всей длине трубопровода не меняется. Поэтому частные производные в первом уравнении системы (26) можно заменить на обычные. Расчет проведем в операторной форме в виде интегрального преобразования Лапласа – Карсона [8]. После разделения переменных это уравнение будет иметь следующий вид:
(27)
где – оператор Лапласа – Карсона ( – мнимая единица), Q(q) – расход воздуха в операторной форме (он не зависит от расстояния по оси воздуховода), р(x,q) – давление в операторной форме (оно является также и функцией расстояния по оси воздуховода). Остальные условные обозначения были приведены ранее.
Проинтегрировав левую и правую части этого уравнения, получим формулу изменения давления воздуха вдоль трубопровода, к тому же, в операторной форме, т. е.
(28)
Постоянную интегрирования А определим из граничных условий на конце воздуховода: при x = L давление p(L,q) = 0. Тогда для этого случая уравнение (28) будет иметь вид:
откуда постоянная интегрирования
(29)
Подставив значение А в формулу (28), получим выражение распределения операторного давления воздуха в трубопроводе в функции расстояния от начала воздуховода, т. е.