Статья: Доказательство Великой теоремы Ферма за одну операцию
Идея предлагаемого вниманию читателя элементарного доказательства Великой теоремы Ферма исключительно проста: после разложения чисел a, b, c на пары слагаемых, затем группировки из них двух сумм U ' и U '' и умножения равенства a ^ n + b ^ n – c ^ n = 0 на 11^ n (т.е. на 11 в степени n , а чисел a , b , c на 11 ) ( k +3) -я цифра в числе a ^ n + b ^ n – c ^ n (где k – число нулей на конце числа a + b – c ) не равна 0 (числа U ' и U '' умножаются по-разному!). Для постижения доказательства нужно знать лишь формулу бинома Ньютона, простейшую формулировку малой теоремы Ферма (приводится), определение простого числа, сложение двух-трех чисел и умножение двузначного числа на 11 . Вот, пожалуй, и ВСЁ! Самое главное (и трудное) – не запутаться в десятке цифр, обозначенных буквами. Формальное описание истории теоремы и библиография в русском тексте опущены.
Доказательство приводится в редакции от 1 июня 2005 года (с учетом дискуссии на мехматовском сайте).
В.С.
Элементарное доказательство Великой теоремы Ферма
ВИКТОР СОРОКИН
ИНСТРУМЕНТАРИЙ: [В квадратных скобках приводится поясняющая, не обязательная информация.]
Используемые обозначения:
Все числа записаны в системе счисления с простым основанием n > 10 .
[Все случаи с составным n, кроме n = 2 k (который сводится к случаю n = 4 ), сводятся к случаю
простого n с помощью простой подстановки. Случаи n = 3, 5 и 7 здесь не рассматриваются.]
ak – k -я цифра от конца в числе a (a 1 – последняя цифра).
[Пример для a = 1043: 1043 = 1 x53 + 0 x52 + 4 x51 + 3 x50 ; a1 = 3 , a2 = 4 , a3 = 0 , a4 = 1 .]
a( k ) – окончание (число) из k цифр числа a (a (1) = a 1 ; 1043(3) = 043 ). Везде в тексте a 1 № 0 .
[Если все три числа a , b и c оканчиваются на ноль, следует разделить равенство 1° на nn .]
(ai n )1 = ai и(ai n - 1 )1 = 1 (см. Малую теорему Ферма для ai № 0 ). (0.1°)
( n + 1) n = (10 + 1) n = 11 n = …101 (см. Бином Ньютона для простого n ).
Простое следствие из бинома Ньютона и малой теоремы Ферма для s № 1 [a 1 № 0 ]:
если цифра as увеличивается/уменьшается на 0 < d < n ,
то цифра an s +1 увеличивается/уменьшается на d (или d + n , или d – n ). (0.2°)
[В отрицательных числах цифры считаются отрицательными.]
***
(1°) Допустим, что an + bn – cn = 0 .
Случай 1 : ( bc )1 ? 0.
(2°) Пусть u = a + b – c , где u ( k ) = 0, uk +1 ? 0 ,k > 0 [известно, что в 1° u > 0 иk > 0 ].
(3°) Умножим равенство 1° на число d 1 n (см. §§2 и 2a в Приложении) с целью превратить
цифру uk +1 в 5 . После этой операции обозначения чисел не меняются
и равенство продолжает идти под тем же номером (1°).
Очевидно, что и в новом равенстве (1°) u = a + b – c , u ( k ) = 0 ,uk +1 = 5 .
(1*°) И пусть a * n + b * n – c * n = 0 , где знаком “*” обозначены записанные в каноническом виде числа в равенстве (1°) после умножения равенства (1°) на 11 n .
(4°) Введем в указанной здесь очередности следующие числа:u ,u ' = a ( k ) + b ( k ) – c ( k ) ,
u'' = u – u' = (a – a(k) ) + (b – b(k) ) – (c – c(k) ) , v = (ak+2 + bk+2 – ck+2 )1 , u*' = a*(k) + b*(k) – c*(k) ,
u*'' = u* – u*' = (a* – a*(k) ) + (b* – b*(k) ) – (c* – c*(k) ) , 11u' , 11u'' ,v* = (a*k+2 + b*k+2 – c*k+2 )1 ,
и вычислим две последние значащие цифры в этих числах:
(3a°) uk+1 = (u'k+1 + u''k+1 )1 =5 ;
(5°) u'k+1 = (–1 , 0 или1 ) – таккак – nk < a'(k) < nk , – nk < b'(k) < nk , – nk < c'(k) < nk
и числа a , b , c имеют различные знаки;
(6°) u '' k +1 = (4 , 5 или6 )(см. 3a° и 5°) [важно :1 < u '' k +1 < n – 1 ];
(7°) u ' k +2 = 0 [всегда!] – так как \ u '\ < 2 nk ;
(8°) u '' k +2 = uk +2 [всегда!];
(9°) u '' k +2 = [ v + ( ak +1 + bk +1 – ck +1 )2 ]1 , где ( ak +1 + bk +1 – ck +1 )2 = (–1 , 0 или1 );
(10°) v = [ uk +2 – ( a ( k +1) + b ( k +1) – c ( k +1) ) k +2 ]1 [где ( a ( k +1) + b ( k +1) – c ( k +1) ) k +2 = (–1 , 0 или1 )] =
= [ uk +2 – (–1 , 0 или1 )]1 ;
(11°) u * k +1 = uk +1 = 5 – т.к. u * k +1 иuk +1 – последние значащие цифры в числах u * и u ;
(12°) u *' k +1 = u ' k +1 – т.к. u *' k +1 иu ' k +1 – последние значащие цифры в числах u *' и u ' ;
(13°) u*''k+1 = (u*k+1 – u*'k+1 )1 = (3 – u*'k+1 )1 = (4 , 5 или6 )[важно : 1 < u*''k+1 < n – 1 ];
(14°) (11 u ') k +2 = ( u ' k +2 + u ' k +1 )1 (затем – в результате приведения чисел к каноническому виду –
величина u ' k +1 «уходит» в u *'' k +2 , поскольку u *' k +2 = 0 );
(14a°) важно: числа (11 u ')( k +2) и u *'( k +2) отличаются только k +2 -ми цифрами, а именно:
u *' k +2 = 0 , но (11 u ') k +2 № 0 в общем случае;
(15°) (11 u '') k +2 = ( u '' k +2 + u '' k +1 )1 ;
(16°) u*k+2 = (uk+2 + uk+1 )1 = (u''k+2 + uk+1 )1 = (u''k+2 + 5)1 ;
(16а°) к сведению: u *' k +2 = 0 (см. 7°);
(17°) u*''k+2 = (u*k+2 +1 , u*k+2 илиu*k+2 – 1 )1 = (см. 9°) = (u''k+2 + 4 ,u''k+2 + 5 или u''k+2 + 6)1 ;
(18°) v* = [u*k+2 – (a*(k+1) + b*(k+1) – c*(k+1) )k+2 ]1
[гдеu*k+2 = (uk+2 + uk+1 )1 (см. 16°), а(a*(k+1) + b*(k+1) – c*(k+1) )k+2 = (–1 , 0 или1 ) – см. 10°] =
= [(uk+2 + uk+1 )1 – (–1 , 0 или1 )]1 .
(19°) ВведемчислаU' = (ak+1 )n + (bk+1 )n – (ck+1 )n , U'' = (an + bn – cn ) – U' , U = U' + U'' ,
U*' = (a*k+1 )n + (b*k+1 )n – (c*k+1 )n , U*'' = (a*n + b*n – c*n ) – U*' , U* = U*' + U*'' ;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--