Статья: Эффект Казимира или проблема вакуума

Вспоминается история человека, которому поручили продавать газированную воду на благотворительном базаре. Ему велели спрашивать: "С каким сиропом Вы желаете?" Когда покупатель пожелал воды без сиропа, то наш герой спросил: "Без какого сиропа? Без малинового или без вишневого?"

Когда фокусник достает из совершенно пустой шляпы сначала живого кролика, затем цветы, а под конец начинает вытягивать бесконечную блестящую ленту, умные дети, конечно, восторженно аплодируют, но знают, что все это - чистейшей воды обман. Они прекрасно понимают, что из ничего нельзя достать что-то. Все эти кролики, цветы и ленты уже были где-то заранее припрятаны, а все "чудо" - в ловких руках фокусника.

Ну, а теперь давайте посмотрим настоящее представление, которое дает подлинный маг и чародей - природа. Для начала подготовим сцену. Уберем все эти дома, леса и горы. Уберем Солнце, Землю и всякие там туманности. Затем займемся оставшимися молекулами, атомами и элементарными частицами. Заодно выкинем поля: электромагнитные, гравитационные, да и вообще все, какие нам попадутся. Вот теперь сцена подготовлена. То, что осталось - ну совершенно пустая шляпа - абсолютный физический вакуум. Теперь выход природы. В руках у нее две совершенно нейтральные плоские металлические пластинки, которые вдруг ни с того, ни с сего начинают притягиваться друг к другу. Учтите - это настоящий фокус! Мы ведь заранее уничтожили все поля, включая электромагнитные и гравитационные. Как же тогда эти пластинки ухитряются почувствовать друг друга на расстоянии? Конечно, притяжение между пластинками очень, очень слабенькое, но ведь есть же! Подчеркнем: это - не вымысел, это - экспериментально установленный факт. Данный эффект носит название эффекта Казимира. Для того чтобы разобраться, в чем соль этого фокуса, давайте заглянем за кулисы и попытаемся "разоблачить" природу. Для этого надо сделать всего несколько шагов.

Шаг первый. Вот простая задача: дан шарик массой m на невесомой пружине жесткостью k. Спрашивается, при каких значениях импульса шарика и его координаты энергия системы принимает наименьшее значение и чему это значение равно? С точки зрения классической ньютоновской механики ответ очевиден. Если V - скорость, а x - координата шарика, то полная механическая энергия системы имеет вид

E =

mV2

2

+

kx2

2

.

(1.1)

Задавая произвольные начальные значения для V и x, мы получаем движение с какой-то определенной энергией. Поскольку V и x можно выбирать независимо и как угодно, а выражение для энергии зависит от квадратов этих величин, наименьшее значение энергии равно нулю. Ясно, что при нулевом значении энергии скорость и координата как были равны нулю в начальный момент времени, так и останутся равными нулю во все последующие моменты времени согласно закону сохранения энергии. Итак, мы получили ответ: состояние классического осциллятора, соответствующее состоянию с минимально возможной энергией, - это состояние абсолютного покоя. Увы, покой нам только снится. У природы свой взгляд на решение этой школьной задачи. Она, природа, особенно если дело доходит до ее обожаемых электрончиков-позитрончиков, разных там атомов и молекул, объявила нам, что живут они не по ньютоновским законам, а по своим - квантовым. Квантовая механика утверждает, что никакая система принципиально не может находиться в состоянии абсолютного покоя, и этот вывод квантовой механики подтвержден экспериментально!

Наша простенькая задача неожиданно усложнилась. Теперь даже в основном состоянии - состоянии с минимальной энергией - система просто обязана находиться в непрерывном движении. Наш шарик на самом деле дрожит (или, как это говорят "по-ученому", - флуктуирует) около положения равновесия. Конечно, амплитуда этих колебаний очень и очень мала. Только природа может "увидеть" что-то такого маленького размера. Человеческий глаз явлений, происходящих в столь маленьком масштабе, не различает. Вот поэтому и живем мы спокойно и счастливо в правильном ньютоновском мире, и наш дом никаких "квантовых" флуктуаций не испытывает. Стоит себе, как вкопанный, и стоит.

Но вернемся к нашей задаче. Сделаем второй шаг. Правда, как нам его сделать, как нам надо поступить, чтобы найти минимальное значение энергии, действуя по правилам квантовой механики? Первое правило квантовой механики гласит: мы не имеем права выбирать значения импульса и координаты шарика как нам заблагорассудится. Предположим, мы откуда-то знаем, по какому закону двигается шарик в состоянии с минимальной энергией. (Такое состояние в квантовой механике называют основным состоянием.) Тогда мы можем вычислить средне-квадратичное отклонение от положения равновесия ср.зн. x2 и средне-квадратичное значение импульса ср.зн. p2. Черта означает, что мы усредняем эти величины по периоду колебаний. Согласно квантово-механическим представлениям эти величины связаны соотношением

(ср.зн. x2)1/2(ср.зн. p2)1/2 

(h)

2

,

(1.2)

где (h) - знаменитая постоянная Планка.

Запомните это соотношение! Оно играет основную роль в наблюдаемых хитросплетениях, подсовываемых нам природой вместо простых и однозначных классических построений. Неравенство (1.2) называется соотношением неопределенности.

Итак, правило номер два: чтобы вычислить энергию основного состояния, мы должны использовать соотношение неопределенности. Проделаем соответствующие вычисления. Поскольку мы исследуем малые колебания возле положения равновесия, положим ср.зн. x2x2, ср.зн. p2p2. Как это ни странно, но выражение для полной механической энергии природа решила оставить без изменения. Единственное условие состоит в том, что в этом выражении импульс и координата всегда должны быть связаны соотношением неопределенности. Если считать, что p2·x2(h)2/4, то полная энергия является функцией только одной переменной. Действительно, с учетом равенства (1.1) получаем

E =

(h)2

8mx2

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 245
Бесплатно скачать Статья: Эффект Казимира или проблема вакуума