Статья: Эффект Казимира или проблема вакуума
Вспоминается история человека, которому поручили продавать газированную воду на благотворительном базаре. Ему велели спрашивать: "С каким сиропом Вы желаете?" Когда покупатель пожелал воды без сиропа, то наш герой спросил: "Без какого сиропа? Без малинового или без вишневого?"
Когда фокусник достает из совершенно пустой шляпы сначала живого кролика, затем цветы, а под конец начинает вытягивать бесконечную блестящую ленту, умные дети, конечно, восторженно аплодируют, но знают, что все это - чистейшей воды обман. Они прекрасно понимают, что из ничего нельзя достать что-то. Все эти кролики, цветы и ленты уже были где-то заранее припрятаны, а все "чудо" - в ловких руках фокусника.
Ну, а теперь давайте посмотрим настоящее представление, которое дает подлинный маг и чародей - природа. Для начала подготовим сцену. Уберем все эти дома, леса и горы. Уберем Солнце, Землю и всякие там туманности. Затем займемся оставшимися молекулами, атомами и элементарными частицами. Заодно выкинем поля: электромагнитные, гравитационные, да и вообще все, какие нам попадутся. Вот теперь сцена подготовлена. То, что осталось - ну совершенно пустая шляпа - абсолютный физический вакуум. Теперь выход природы. В руках у нее две совершенно нейтральные плоские металлические пластинки, которые вдруг ни с того, ни с сего начинают притягиваться друг к другу. Учтите - это настоящий фокус! Мы ведь заранее уничтожили все поля, включая электромагнитные и гравитационные. Как же тогда эти пластинки ухитряются почувствовать друг друга на расстоянии? Конечно, притяжение между пластинками очень, очень слабенькое, но ведь есть же! Подчеркнем: это - не вымысел, это - экспериментально установленный факт. Данный эффект носит название эффекта Казимира. Для того чтобы разобраться, в чем соль этого фокуса, давайте заглянем за кулисы и попытаемся "разоблачить" природу. Для этого надо сделать всего несколько шагов.
Шаг первый. Вот простая задача: дан шарик массой m на невесомой пружине жесткостью k. Спрашивается, при каких значениях импульса шарика и его координаты энергия системы принимает наименьшее значение и чему это значение равно? С точки зрения классической ньютоновской механики ответ очевиден. Если V - скорость, а x - координата шарика, то полная механическая энергия системы имеет вид
|
(1.1) |
Задавая произвольные начальные значения для V и x, мы получаем движение с какой-то определенной энергией. Поскольку V и x можно выбирать независимо и как угодно, а выражение для энергии зависит от квадратов этих величин, наименьшее значение энергии равно нулю. Ясно, что при нулевом значении энергии скорость и координата как были равны нулю в начальный момент времени, так и останутся равными нулю во все последующие моменты времени согласно закону сохранения энергии. Итак, мы получили ответ: состояние классического осциллятора, соответствующее состоянию с минимально возможной энергией, - это состояние абсолютного покоя. Увы, покой нам только снится. У природы свой взгляд на решение этой школьной задачи. Она, природа, особенно если дело доходит до ее обожаемых электрончиков-позитрончиков, разных там атомов и молекул, объявила нам, что живут они не по ньютоновским законам, а по своим - квантовым. Квантовая механика утверждает, что никакая система принципиально не может находиться в состоянии абсолютного покоя, и этот вывод квантовой механики подтвержден экспериментально!
Наша простенькая задача неожиданно усложнилась. Теперь даже в основном состоянии - состоянии с минимальной энергией - система просто обязана находиться в непрерывном движении. Наш шарик на самом деле дрожит (или, как это говорят "по-ученому", - флуктуирует) около положения равновесия. Конечно, амплитуда этих колебаний очень и очень мала. Только природа может "увидеть" что-то такого маленького размера. Человеческий глаз явлений, происходящих в столь маленьком масштабе, не различает. Вот поэтому и живем мы спокойно и счастливо в правильном ньютоновском мире, и наш дом никаких "квантовых" флуктуаций не испытывает. Стоит себе, как вкопанный, и стоит.
Но вернемся к нашей задаче. Сделаем второй шаг. Правда, как нам его сделать, как нам надо поступить, чтобы найти минимальное значение энергии, действуя по правилам квантовой механики? Первое правило квантовой механики гласит: мы не имеем права выбирать значения импульса и координаты шарика как нам заблагорассудится. Предположим, мы откуда-то знаем, по какому закону двигается шарик в состоянии с минимальной энергией. (Такое состояние в квантовой механике называют основным состоянием.) Тогда мы можем вычислить средне-квадратичное отклонение от положения равновесия ср.зн. x2 и средне-квадратичное значение импульса ср.зн. p2. Черта означает, что мы усредняем эти величины по периоду колебаний. Согласно квантово-механическим представлениям эти величины связаны соотношением
|
(1.2) |
где (h) - знаменитая постоянная Планка.
Запомните это соотношение! Оно играет основную роль в наблюдаемых хитросплетениях, подсовываемых нам природой вместо простых и однозначных классических построений. Неравенство (1.2) называется соотношением неопределенности.
Итак, правило номер два: чтобы вычислить энергию основного состояния, мы должны использовать соотношение неопределенности. Проделаем соответствующие вычисления. Поскольку мы исследуем малые колебания возле положения равновесия, положим ср.зн. x2x2, ср.зн. p2p2. Как это ни странно, но выражение для полной механической энергии природа решила оставить без изменения. Единственное условие состоит в том, что в этом выражении импульс и координата всегда должны быть связаны соотношением неопределенности. Если считать, что p2·x2(h)2/4, то полная энергия является функцией только одной переменной. Действительно, с учетом равенства (1.1) получаем
|