Статья: Эффект Казимира или проблема вакуума

m



1/2

,

причем равенство достигается, когда

(h)2

8mx2

=

kx2

2

,

откуда

x2min =

(h)

2(km)1/2

.

Таким образом, получаем

Emin =

(h)

2

,

где  = (k/m)1/2.

Конечно, точное решение задачи об энергии основного состояния осциллятора значительно сложнее и выходит за рамки школьной математики. Интересно другое: результат, полученный нами, совпадает с точным! Кстати, это не такой уж редкий случай в физике, когда простые оценки приводят к правильному ответу.

Несмотря на простоту данного результата и необычайную легкость, с которой мы его получили, по-хорошему его надо бы вставить в рамочку и повесить на стенку рядом с уравнением Эйнштейна E = mс2. Ведь он кардинально меняет наши представления о том, что это такое, когда ничего нет.

Кстати, а о чем это мы? Зачем мы вдруг начали решать задачу об осцилляторе, если в начале так долго и красиво говорили об абсолютном вакууме. Нет, не зря мы проводили эти вычисления. Вспоминайте: вакуум - это полное отсутствие чего-либо. Именно с таким расчетом мы готовили сцену для демонстрации эффекта Казимира. Мы тщательно убирали частицы и поля, т.е. уменьшали энергию Вселенной. Действительно, была частица, была Эйнштейновская энергия mc2, не стало частицы - полная энергия системы понизилась на эту величину. Было электромагнитное поле (т.е. существовала неразрывная парочка: электрическая E плюс магнитная B составляющие) - была энергия

0 E2

2

К-во Просмотров: 248
Бесплатно скачать Статья: Эффект Казимира или проблема вакуума