Статья: Исторические проблемы математики. Число и арифметическое действие
Ответ такой: из всех возможных только одно описание принимается в качестве стандартного описания. По которому только ИНС и опознается. Все прочие описания являются нестандартными. Они могут свободно использоваться для описания фактического способа получения ИНС. Однако при этом сама ИНС считается не опознанной. Для ее опознания необходимо выполнить переход от произвольного нестандартного описания, к стандартному описанию.
Такой переход от нестандартного описания к стандартному называется арифметическим действием.
Это относится к любому действию - сложению, вычитанию, умножению, делению, возведению в степень или извлечению корня. Хотя одни из них и могут формально определяться через другие, например, вычитание – как действие, обратное сложению. Но первое, которое, по мнению математика, “не может быть определено формально”, - согласно указанному определению.
Стандартное описание
Стандартное описание составляется по следующим правилам:
Произвольные наименования ИНС1, ИНС2, ИНС3 и т.д. располагаются в определенной последовательности - справа налево.
При наличии ИНС, образованной ИНО2, ИНО3 и т.д. все ИНС, образованные предыдущими ИНО должны быть указаны.
Крайняя левая ИНС не может быть равна нулю.
ИНС, образованная только одной ИНС1, может быть равна нулю.
Каждая ИНС1, ИНС2 и т.д. может использоваться в описании однократно.
Каждая ИНС1, ИНС2 и т.д. может входить в состав описания ИНС посредством только одного действия – включения, выражаемого знаком “+”.
Только лишь в этом случае обозначения всех ИНО1, ИНО2, …, образующих описание ИНС, могут быть опущены вместе со знаками их включения в состав задаваемой ИНС без нарушения ее понимания.
Нестандартные описания
Прочие описания ИНС, задающие различные способы ее получения, являются нестандартными. Они выражаются арифметическими действиями вычитания, умножения, деления, возведения в степень или извлечения корня. Или сложения, в случае, если какая-нибудь ИНС1, ИНС2 и т.д. использована в описании более одного раза.
Для опознания ИНС любое нестандартное описание должно быть приведено к стандартному описанию, выражаемому через произвольные наименования ИНС1, ИНС2 и т.д. В этом и состоит смысл арифметических действий.
Поясняющие примеры
1. Описание ИНС = 7 ИНО1+ 5ИНО1 является не стандартным, т.к. в нем ИНС1 встречается больше одного раза. Здесь сами обозначения ИНО1 могут быть опущены без ущерба для понимания, а описание сокращено до ИНС = 7 + 5. Но знак включения “+” не может быть опущен, т.к. это описание не стандартное.
2. Описание этой же ИНС = 1ИНО2 + 2 ИНО1 является стандартным. В нем могут быть опущены без ущерба для понимания как обозначения самих ИНО1, ИНО2, так и знак “+” включения образуемых ими ИНС1, ИНС2 в состав описываемой ИНС.
Поэтому описание ИНС может быть без ущерба для понимания максимально сокращено до ИНС = 12.
3. Описание этой же ИНС = 2 ИНО1 + 1ИНО2, выражающее возможный реальный способ ее получения, является нестандартным, т.к. в нем нарушена правильная последовательность расположения ИНС1, ИНС2. Поэтому в ней должен быть изменен порядок, после чего она получает стандартное описание, выражаемое сокращенной записью 12.
4. Описание ИНС = 1ИНО2 является нестандартным, т.к. в нем отсутствует ИНС, образуемая ИНО1. Стандартное описание должно иметь вид ИНС = 1 ИНО2 + 0 ИНО1, после чего могут быть опущены без ущерба для понимания как обозначения самих ИНО1, ИНО2, так и знак включения образуемых ими ИНС1, ИНС2 в состав описываемой ИНС. Это дает стандартное сокращенное описание ИНС = 10.
5. Описание ИНС = 7 ИНО1 – 5 ИНО1 является нестандартным, т.к. она образована не посредством включения ИНС1, обозначаемого знаком “+”, а изъятия, обозначаемого знаком “-”. Ее стандартное произвольное наименование ИНС = 2.
То же относится к операциям умножения, деления, возведения в степень и извлечения корня. Описания ИНС, выражаемые посредством указанных операций, являются нестандартными. Требующими приведения ИНС для ее опознания к стандартному описанию. В этом и состоит смысл арифметических действий.
Список литературы
М.Я. Выгодский "Справочник по элементарной математике".
И. Кант “Критика чистого разума”.
А.А. Кириллов “Что такое число?” (Современная математика для студентов) ВО “Наука” - М. “Физматлит” 1993.
В.Н. Молодший “Основы учения о числе в XVIII и начале XIX века”. Пособие для учителей. Государственное учебно-педагогическое издательство министерства просвещения РСФСР. Москва, 1963, с. 33 – 35.
Н.А. Принцев “Арифметика” Учебное пособие для 5 – 6 классов вечерней (сменной) средней общеобразовательной школы. Издательство пятое. Изд. “ПРОСВЕЩЕНИЕ”, Москва, 1966, тир. 170 000 экз. Суммарно полмиллиона экземпляров.
И.Н. Шевченко “Арифметика”. Учебник для 5 – 6 классов восьмилетней школы. Издательство “Просвещение”, Москва, 1965.
www.sciteclibrary.ru/rus/catalog/pages/8176.html.